These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26463679)

  • 21. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observer design for a core circadian rhythm network.
    Zhang Y
    ScientificWorldJournal; 2014; 2014():476912. PubMed ID: 25121122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora.
    Li S; Lakin-Thomas P
    J Biol Rhythms; 2010 Apr; 25(2):71-80. PubMed ID: 20348458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling a circadian surface.
    Roenneberg T; Rémi J; Merrow M
    J Biol Rhythms; 2010 Oct; 25(5):340-9. PubMed ID: 20876814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time optimal entrainment control for circadian rhythm.
    Julius AA; Yin J; Wen JT
    PLoS One; 2019; 14(12):e0225988. PubMed ID: 31851723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient resetting: a novel mechanism for synchrony and its biological examples.
    Li C; Chen L; Aihara K
    PLoS Comput Biol; 2006 Aug; 2(8):e103. PubMed ID: 16933980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the dual pacemaker system of the tau mutant hamster.
    Oda GA; Menaker M; Friesen WO
    J Biol Rhythms; 2000 Jun; 15(3):246-64. PubMed ID: 10885879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks.
    Nakahata Y; Akashi M; Trcka D; Yasuda A; Takumi T
    BMC Mol Biol; 2006 Feb; 7():5. PubMed ID: 16483373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronizing the Neurospora crassa circadian clock with the rhythmic environment.
    Price-Lloyd N; Elvin M; Heintzen C
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):949-52. PubMed ID: 16246018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian oscillators, cell cycles, and singularities: light perturbations of the free-running rhythm of cell division in Euglena.
    Malinowski JR; Laval-Martin DL; Edmunds LN
    J Comp Physiol B; 1985; 155(2):257-67. PubMed ID: 3837018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronization of plant circadian oscillators with a phase delay effect of the vein network.
    Fukuda H; Nakamichi N; Hisatsune M; Murase H; Mizuno T
    Phys Rev Lett; 2007 Aug; 99(9):098102. PubMed ID: 17931039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive temperature compensation in circadian oscillations.
    François P; Despierre N; Siggia ED
    PLoS Comput Biol; 2012; 8(7):e1002585. PubMed ID: 22807663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature.
    Varma V; Mukherjee N; Kannan NN; Sharma VK
    J Biol Rhythms; 2013 Dec; 28(6):380-9. PubMed ID: 24336416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A circadian system model with feedback of cross-correlation between sleep-wake rhythm and oscillator.
    Nakao M; Yamamoto K; Nakamura K; Katayama N; Yamamoto M
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):295-7. PubMed ID: 11422881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronisation mechanisms of circadian rhythms in the suprachiasmatic nucleus.
    Li Y; Liu Z; Zhang J; Wang R; Chen L
    IET Syst Biol; 2009 Mar; 3(2):100-12. PubMed ID: 19292564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells.
    Nagoshi E; Saini C; Bauer C; Laroche T; Naef F; Schibler U
    Cell; 2004 Nov; 119(5):693-705. PubMed ID: 15550250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The bird circadian clock: insights from a computational model.
    Woller A; Gonze D
    J Biol Rhythms; 2013 Dec; 28(6):390-402. PubMed ID: 24336417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Goodwin model revisited: Hopf bifurcation, limit-cycle, and periodic entrainment.
    Woller A; Gonze D; Erneux T
    Phys Biol; 2014 Aug; 11(4):045002. PubMed ID: 25075916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entrainment in a model of the mammalian circadian oscillator.
    Geier F; Becker-Weimann S; Kramer A; Herzel H
    J Biol Rhythms; 2005 Feb; 20(1):83-93. PubMed ID: 15654073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmaceutical-based entrainment of circadian phase via nonlinear model predictive control.
    Abel JH; Chakrabarty A; Klerman EB; Doyle FJ
    Automatica (Oxf); 2019 Feb; 100():336-348. PubMed ID: 31673164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.