BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26463839)

  • 1. Adaptive noise correction of dual-energy computed tomography images.
    Maia RS; Jacob C; Hara AK; Silva AC; Pavlicek W; Mitchell JR
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):667-78. PubMed ID: 26463839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algorithm for noise correction of dual-energy computed tomography material density images.
    Maia RS; Jacob C; Hara AK; Silva AC; Pavlicek W; Ross MJ
    Int J Comput Assist Radiol Surg; 2015 Jan; 10(1):87-100. PubMed ID: 24817129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive noise reduction for dual-energy x-ray imaging based on spatial variations in beam attenuation.
    Romadanov I; Sattarivand M
    Phys Med Biol; 2020 Dec; 65(24):245023. PubMed ID: 32554889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts?
    Kuchenbecker S; Faby S; Sawall S; Lell M; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):1023-36. PubMed ID: 25652515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media.
    Grant KL; Flohr TG; Krauss B; Sedlmair M; Thomas C; Schmidt B
    Invest Radiol; 2014 Sep; 49(9):586-92. PubMed ID: 24710203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm.
    Schabel C; Bongers M; Sedlmair M; Korn A; Grosse U; Mangold S; Claussen CD; Thomas C
    Rofo; 2014 Jun; 186(6):591-7. PubMed ID: 24756426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative and Qualitative Comparison of Single-Source Dual-Energy Computed Tomography and 120-kVp Computed Tomography for the Assessment of Pancreatic Ductal Adenocarcinoma.
    Bhosale P; Le O; Balachandran A; Fox P; Paulson E; Tamm E
    J Comput Assist Tomogr; 2015; 39(6):907-13. PubMed ID: 26295192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
    Hu K; Cheng Q; Gao X
    Magn Reson Imaging; 2016 Oct; 34(8):1128-40. PubMed ID: 27238055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure.
    Stiller W; Schwarzwaelder CB; Sommer CM; Veloza S; Radeleff BA; Kauczor HU
    Eur J Radiol; 2012 Jul; 81(7):1405-12. PubMed ID: 21458939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing Iodine Contrast-to-Noise Ratios in Abdominal CT Imaging through Use of Energy Domain Noise Reduction and Virtual Monoenergetic Dual-Energy CT.
    Leng S; Yu L; Fletcher JG; McCollough CH
    Radiology; 2015 Aug; 276(2):562-70. PubMed ID: 25860839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise Suppression in Image-Domain Multi-Material Decomposition for Dual-Energy CT.
    Jiang Y; Xue Y; Lyu Q; Xu L; Luo C; Yang P; Yang C; Wang J; Hu X; Zhang X; Sheng K; Niu T
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):523-535. PubMed ID: 31095473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive nonlocal means filtering based on local noise level for CT denoising.
    Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A
    Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.
    Stenner P; Kachelriess M
    Med Phys; 2008 Nov; 35(11):5054-60. PubMed ID: 19070239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative dual energy material decomposition from spatial mismatched raw data sets.
    Zhao X; Hu JJ; Zhao YS; Zhang HT; Zhang P
    J Xray Sci Technol; 2014; 22(6):745-62. PubMed ID: 25408391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.