These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26464184)

  • 41. [Review of estimation on oceanic primary productivity by using remote sensing methods.].
    Xu HY; Zhou WF; Ji SJ
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):3042-3050. PubMed ID: 29732871
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis.
    Reyburn R; Kim DR; Emch M; Khatib A; von Seidlein L; Ali M
    Am J Trop Med Hyg; 2011 Jun; 84(6):862-9. PubMed ID: 21633020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea.
    Lin J; Cao W; Wang G; Hu S
    Mar Pollut Bull; 2014 Jun; 83(1):190-7. PubMed ID: 24793781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of relationship between Anopheles subpictus larval densities and environmental parameters using Remote Sensing (RS), a Global Positioning System (GPS) and a Geographic Information System (GIS).
    Anno S; Takagi M; Tsuda Y; Yotopranoto S; Dachlan YP; Bendryman SS; Ono M; Kawabata M
    Kobe J Med Sci; 2000 Dec; 46(6):231-43. PubMed ID: 11501013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe.
    Jutla A; Aldaach H; Billian H; Akanda A; Huq A; Colwell R
    PLoS One; 2015; 10(9):e0137828. PubMed ID: 26417994
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study on suitable distribution areas of Notopterygium incisum in Sichuan province based on remote sensing and GIS.
    Shang X; Dong LJ; Wen LJ; Peng WF; Xu XL; Fang QM
    Zhongguo Zhong Yao Za Zhi; 2015 Jul; 40(13):2553-8. PubMed ID: 26697677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Climate-based health monitoring systems for eco-climatic conditions associated with infectious diseases.
    Pinzon E; Wilson JM; Tucker CJ
    Bull Soc Pathol Exot; 2005 Sep; 98(3):239-43. PubMed ID: 16267968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS).
    Zhang Y; Chen Z; Zhu B; Luo X; Guan Y; Guo S; Nie Y
    Environ Monit Assess; 2008 Dec; 147(1-3):327-37. PubMed ID: 18197462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of epidemic cholera due to Vibrio cholerae O1 in children younger than 10 years using climate data in Bangladesh.
    Matsuda F; Ishimura S; Wagatsuma Y; Higashi T; Hayashi T; Faruque AS; Sack DA; Nishibuchi M
    Epidemiol Infect; 2008 Jan; 136(1):73-9. PubMed ID: 17346360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A study of the environmental factors influencing the growth phases of Ulva prolifera in the southern Yellow Sea, China.
    Jin S; Liu Y; Sun C; Wei X; Li H; Han Z
    Mar Pollut Bull; 2018 Oct; 135():1016-1025. PubMed ID: 30300995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Association between esophageal cancer and drought in China by using Geographic Information System.
    Wu K; Li K
    Environ Int; 2007 Jul; 33(5):603-8. PubMed ID: 17267034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Research on suitable distribution of Paris yunnanensis based on remote sensing and GIS].
    Luo Y; Dong YB; Zhu C; Peng WF; Fang QM; Xu XL
    Zhongguo Zhong Yao Za Zhi; 2017 Nov; 42(22):4378-4386. PubMed ID: 29318839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.
    Pahlevan N; Lee Z; Hu C; Schott JR
    Appl Opt; 2014 Feb; 53(4):648-65. PubMed ID: 24514182
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GIS and disease.
    Cromley EK
    Annu Rev Public Health; 2003; 24():7-24. PubMed ID: 12668753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Geographical structures and the cholera epidemic in modern Japan: Fukushima prefecture in 1882 and 1895.
    Kuo CL; Fukui H
    Int J Health Geogr; 2007 Jun; 6():25. PubMed ID: 17603906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of remote sensing and geographical information systems to identify environmental features that influence the distribution of paramphistomosis in sheep from the southern Italian Apennines.
    Cringoli G; Taddei R; Rinaldi L; Veneziano V; Musella V; Cascone C; Sibilio G; Malone JB
    Vet Parasitol; 2004 Jun; 122(1):15-26. PubMed ID: 15158553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Refractory periods and climate forcing in cholera dynamics.
    Koelle K; Rodó X; Pascual M; Yunus M; Mostafa G
    Nature; 2005 Aug; 436(7051):696-700. PubMed ID: 16079845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental and socio-economic risk modelling for Chagas disease in Bolivia.
    Mischler P; Kearney M; McCarroll JC; Scholte RG; Vounatsou P; Malone JB
    Geospat Health; 2012 Sep; 6(3):S59-66. PubMed ID: 23032284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using the information value method in a geographic information system and remote sensing for malaria mapping: a case study from India.
    Rai PK; Nathawat MS; Rai S
    Inform Prim Care; 2013; 21(1):43-52. PubMed ID: 24629656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions.
    Ogata T; Racault MF; Nonaka M; Behera S
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.