BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 26464523)

  • 1. Transcriptome-wide investigation of circular RNAs in rice.
    Lu T; Cui L; Zhou Y; Zhu C; Fan D; Gong H; Zhao Q; Zhou C; Zhao Y; Lu D; Luo J; Wang Y; Tian Q; Feng Q; Huang T; Han B
    RNA; 2015 Dec; 21(12):2076-87. PubMed ID: 26464523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice.
    Ye CY; Zhang X; Chu Q; Liu C; Yu Y; Jiang W; Zhu QH; Fan L; Guo L
    RNA Biol; 2017 Aug; 14(8):1055-1063. PubMed ID: 27739910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, characterization, and functional prediction of circular RNAs in maize.
    Han Y; Li X; Yan Y; Duan MH; Xu JH
    Mol Genet Genomics; 2020 Mar; 295(2):491-503. PubMed ID: 31894398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread noncoding circular RNAs in plants.
    Ye CY; Chen L; Liu C; Zhu QH; Fan L
    New Phytol; 2015 Oct; 208(1):88-95. PubMed ID: 26204923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CircNet: a database of circular RNAs derived from transcriptome sequencing data.
    Liu YC; Li JR; Sun CH; Andrews E; Chao RF; Lin FM; Weng SL; Hsu SD; Huang CC; Cheng C; Liu CC; Huang HD
    Nucleic Acids Res; 2016 Jan; 44(D1):D209-15. PubMed ID: 26450965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular RNA profiling of the rice photo-thermosensitive genic male sterile line Wuxiang S reveals circRNA involved in the fertility transition.
    Wang Y; Xiong Z; Li Q; Sun Y; Jin J; Chen H; Zou Y; Huang X; Ding Y
    BMC Plant Biol; 2019 Aug; 19(1):340. PubMed ID: 31382873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular RNA: A new star of noncoding RNAs.
    Qu S; Yang X; Li X; Wang J; Gao Y; Shang R; Sun W; Dou K; Li H
    Cancer Lett; 2015 Sep; 365(2):141-8. PubMed ID: 26052092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification and functional analysis of circRNAs in Zea mays.
    Tang B; Hao Z; Zhu Y; Zhang H; Li G
    PLoS One; 2018; 13(12):e0202375. PubMed ID: 30533052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice.
    Huang X; Zhang H; Guo R; Wang Q; Liu X; Kuang W; Song H; Liao J; Huang Y; Wang Z
    Planta; 2021 Jan; 253(2):26. PubMed ID: 33410920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs.
    Dudekula DB; Panda AC; Grammatikakis I; De S; Abdelmohsen K; Gorospe M
    RNA Biol; 2016; 13(1):34-42. PubMed ID: 26669964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Rice Transcriptome Reveals the LncRNA/CircRNA Regulation in Tissue Development.
    Zhou R; Sanz-Jimenez P; Zhu XT; Feng JW; Shao L; Song JM; Chen LL
    Rice (N Y); 2021 Jan; 14(1):14. PubMed ID: 33507446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean.
    Zhao W; Cheng Y; Zhang C; You Q; Shen X; Guo W; Jiao Y
    Sci Rep; 2017 Jul; 7(1):5636. PubMed ID: 28717203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient backsplicing produces translatable circular mRNAs.
    Wang Y; Wang Z
    RNA; 2015 Feb; 21(2):172-9. PubMed ID: 25449546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells.
    Chuang TJ; Chen YJ; Chen CY; Mai TL; Wang YD; Yeh CS; Yang MY; Hsiao YT; Chang TH; Kuo TC; Cho HH; Shen CN; Kuo HC; Lu MY; Chen YH; Hsieh SC; Chiang TW
    Nucleic Acids Res; 2018 Apr; 46(7):3671-3691. PubMed ID: 29385530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide identification and functional investigation of circular RNA in the teleost large yellow croaker (Larimichthys crocea).
    Xu S; Xiao S; Qiu C; Wang Z
    Mar Genomics; 2017 Apr; 32():71-78. PubMed ID: 28089131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice.
    Zhang YC; Liao JY; Li ZY; Yu Y; Zhang JP; Li QF; Qu LH; Shu WS; Chen YQ
    Genome Biol; 2014 Dec; 15(12):512. PubMed ID: 25517485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CircRNAs in Plants.
    Lai X; Bazin J; Webb S; Crespi M; Zubieta C; Conn SJ
    Adv Exp Med Biol; 2018; 1087():329-343. PubMed ID: 30259378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA.
    Sun X; Wang L; Ding J; Wang Y; Wang J; Zhang X; Che Y; Liu Z; Zhang X; Ye J; Wang J; Sablok G; Deng Z; Zhao H
    FEBS Lett; 2016 Oct; 590(20):3510-3516. PubMed ID: 27685607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional prediction of soybean CircRNAs involved in low-temperature responses.
    Wang X; Chang X; Jing Y; Zhao J; Fang Q; Sun M; Zhang Y; Li W; Li Y
    J Plant Physiol; 2020 Jul; 250():153188. PubMed ID: 32450394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.