These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26464980)
1. Sigh and Eupnea Rhythmogenesis Involve Distinct Interconnected Subpopulations: A Combined Computational and Experimental Study. Toporikova N; Chevalier M; Thoby-Brisson M eNeuro; 2015; 2(2):. PubMed ID: 26464980 [TBL] [Abstract][Full Text] [Related]
2. Generation of eupnea and sighs by a spatiochemically organized inspiratory network. Ruangkittisakul A; Schwarzacher SW; Secchia L; Ma Y; Bobocea N; Poon BY; Funk GD; Ballanyi K J Neurosci; 2008 Mar; 28(10):2447-58. PubMed ID: 18322090 [TBL] [Abstract][Full Text] [Related]
3. Neural mechanisms for sigh generation during prenatal development. Thoby-Brisson M J Neurophysiol; 2018 Sep; 120(3):1162-1172. PubMed ID: 29897860 [TBL] [Abstract][Full Text] [Related]
4. Emergence of sigh rhythmogenesis in the embryonic mouse. Chapuis C; Autran S; Fortin G; Simmers J; Thoby-Brisson M J Physiol; 2014 May; 592(10):2169-81. PubMed ID: 24591570 [TBL] [Abstract][Full Text] [Related]
5. Role of Synaptic Inhibition in the Coupling of the Respiratory Rhythms that Underlie Eupnea and Sigh Behaviors. Borrus DS; Grover CJ; Conradi Smith GD; Del Negro CA eNeuro; 2020; 7(3):. PubMed ID: 32393585 [TBL] [Abstract][Full Text] [Related]
6. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons. Wang Y; Rubin JE J Math Neurosci; 2017 Dec; 7(1):3. PubMed ID: 28589465 [TBL] [Abstract][Full Text] [Related]
7. Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. Tryba AK; Peña F; Lieske SP; Viemari JC; Thoby-Brisson M; Ramirez JM J Neurophysiol; 2008 May; 99(5):2114-25. PubMed ID: 18287547 [TBL] [Abstract][Full Text] [Related]
8. β-Noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro. Viemari JC; Garcia AJ; Doi A; Elsen G; Ramirez JM Front Neural Circuits; 2013; 7():179. PubMed ID: 24273495 [TBL] [Abstract][Full Text] [Related]
9. Pattern-specific synaptic mechanisms in a multifunctional network. I. Effects of alterations in synapse strength. Lieske SP; Ramirez JM J Neurophysiol; 2006 Mar; 95(3):1323-33. PubMed ID: 16492944 [TBL] [Abstract][Full Text] [Related]
10. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry. Song H; Hayes JA; Vann NC; Wang X; LaMar MD; Del Negro CA J Neurosci; 2016 Jul; 36(27):7223-33. PubMed ID: 27383596 [TBL] [Abstract][Full Text] [Related]
12. Inspiratory and sigh breathing rhythms depend on distinct cellular signalling mechanisms in the preBötzinger complex. Borrus DS; Stettler MK; Grover CJ; Kalajian EJ; Gu J; Conradi Smith GD; Del Negro CA J Physiol; 2024 Mar; 602(5):809-834. PubMed ID: 38353596 [TBL] [Abstract][Full Text] [Related]
13. Inspiratory rhythm generation is stabilized by Burgraff NJ; Phillips RS; Severs LJ; Bush NE; Baertsch NA; Ramirez JM J Neurophysiol; 2022 Jul; 128(1):181-196. PubMed ID: 35675444 [TBL] [Abstract][Full Text] [Related]
14. Rhythm generation by the pre-Bötzinger complex in medullary slice and island preparations: effects of adenosine A(1) receptor activation. Vandam RJ; Shields EJ; Kelty JD BMC Neurosci; 2008 Oct; 9():95. PubMed ID: 18826652 [TBL] [Abstract][Full Text] [Related]
15. Morphology of sighs and their role in the control of breathing in preterm infants, term infants and adults. Qureshi M; Khalil M; Kwiatkowski K; Alvaro RE Neonatology; 2009; 96(1):43-9. PubMed ID: 19204409 [TBL] [Abstract][Full Text] [Related]