These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26465048)

  • 1. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.
    Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ
    Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.
    Lin S; Iqbal J; Hu R; Shaaban M; Cai J; Chen X
    Arch Environ Contam Toxicol; 2013 Aug; 65(2):183-92. PubMed ID: 23609028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands.
    Haas E; Carozzi M; Massad RS; Butterbach-Bahl K; Scheer C
    Sci Total Environ; 2022 Aug; 836():154932. PubMed ID: 35447172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.
    Duval BD; Anderson-Teixeira KJ; Davis SC; Keogh C; Long SP; Parton WJ; DeLucia EH
    PLoS One; 2013; 8(8):e72019. PubMed ID: 23991028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia.
    Kusin FM; Akhir NIM; Mohamat-Yusuff F; Awang M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5293-5304. PubMed ID: 28004372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.
    Jin VL; Schmer MR; Stewart CE; Sindelar AJ; Varvel GE; Wienhold BJ
    Glob Chang Biol; 2017 Jul; 23(7):2848-2862. PubMed ID: 28135027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.
    Gao J; Xie Y; Jin H; Liu Y; Bai X; Ma D; Zhu Y; Wang C; Guo T
    PLoS One; 2016; 11(5):e0154773. PubMed ID: 27152647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perennialization and Cover Cropping Mitigate Soil Carbon Loss from Residue Harvesting.
    Jones CD; Oates LG; Robertson GP; Izaurralde RC
    J Environ Qual; 2018 Jul; 47(4):710-717. PubMed ID: 30025060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.
    Gabrielle B; Gagnaire N; Massad RS; Dufossé K; Bessou C
    Bioresour Technol; 2014; 152():511-8. PubMed ID: 24280674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Straw return reduces yield-scaled N
    Yao Z; Yan G; Zheng X; Wang R; Liu C; Butterbach-Bahl K
    Sci Total Environ; 2017 Jul; 590-591():174-185. PubMed ID: 28262361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting field N
    Abalos D; Rittl TF; Recous S; Thiébeau P; Topp CFE; van Groenigen KJ; Butterbach-Bahl K; Thorman RE; Smith KE; Ahuja I; Olesen JE; Bleken MA; Rees RM; Hansen S
    Sci Total Environ; 2022 Mar; 812():152532. PubMed ID: 34952057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.
    Gallagher ME; Hockaday WC; Masiello CA; Snapp S; McSwiney CP; Baldock JA
    Environ Sci Technol; 2011 Mar; 45(5):2013-20. PubMed ID: 21348531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies.
    Wu Y; Liu S; Young CJ; Dahal D; Sohl TL; Davis B
    Sci Rep; 2015 Jun; 5():10830. PubMed ID: 26027873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.
    Gaunt JL; Lehmann J
    Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of climate change on greenhouse gas emissions and water balance in a dryland-cropping region with variable precipitation.
    Karimi T; Stöckle CO; Higgins SS; Nelson RL
    J Environ Manage; 2021 Jun; 287():112301. PubMed ID: 33706089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model.
    Cheng K; Ogle SM; Parton WJ; Pan G
    Glob Chang Biol; 2014 Mar; 20(3):948-62. PubMed ID: 23966349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.