These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26465154)
1. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species. Ding Z; Weissmann S; Wang M; Du B; Huang L; Wang L; Tu X; Zhong S; Myers C; Brutnell TP; Sun Q; Li P PLoS One; 2015; 10(10):e0140629. PubMed ID: 26465154 [TBL] [Abstract][Full Text] [Related]
2. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. Aubry S; Kelly S; Kümpers BM; Smith-Unna RD; Hibberd JM PLoS Genet; 2014 Jun; 10(6):e1004365. PubMed ID: 24901697 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize. Robaina-Estévez S; Nikoloski Z Plant Cell Physiol; 2016 May; 57(5):933-43. PubMed ID: 26903529 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Transcription Factor Binding in Leaves from C Burgess SJ; Reyna-Llorens I; Stevenson SR; Singh P; Jaeger K; Hibberd JM Plant Cell; 2019 Oct; 31(10):2297-2314. PubMed ID: 31427470 [TBL] [Abstract][Full Text] [Related]
5. Getting the most out of natural variation in C4 photosynthesis. Covshoff S; Burgess SJ; Kneřová J; Kümpers BM Photosynth Res; 2014 Feb; 119(1-2):157-67. PubMed ID: 23794170 [TBL] [Abstract][Full Text] [Related]
6. Investigating the Mendieta JP; Tu X; Jiang D; Yan H; Zhang X; Marand AP; Zhong S; Schmitz RJ Proc Natl Acad Sci U S A; 2024 Oct; 121(40):e2402781121. PubMed ID: 39312655 [TBL] [Abstract][Full Text] [Related]
7. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. Xu J; Bräutigam A; Weber AP; Zhu XG J Exp Bot; 2016 Sep; 67(17):5105-17. PubMed ID: 27436282 [TBL] [Abstract][Full Text] [Related]
8. Re-creation of a Key Step in the Evolutionary Switch from C Wang P; Khoshravesh R; Karki S; Tapia R; Balahadia CP; Bandyopadhyay A; Quick WP; Furbank R; Sage TL; Langdale JA Curr Biol; 2017 Nov; 27(21):3278-3287.e6. PubMed ID: 29056456 [TBL] [Abstract][Full Text] [Related]
9. De novo transcriptome assemblies of C Prochetto S; Studer AJ; Reinheimer R BMC Genomics; 2023 Feb; 24(1):64. PubMed ID: 36747121 [TBL] [Abstract][Full Text] [Related]
10. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Matsuoka M; Kyozuka J; Shimamoto K; Kano-Murakami Y Plant J; 1994 Sep; 6(3):311-9. PubMed ID: 7920719 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Yu CP; Chen SC; Chang YM; Liu WY; Lin HH; Lin JJ; Chen HJ; Lu YJ; Wu YH; Lu MY; Lu CH; Shih AC; Ku MS; Shiu SH; Wu SH; Li WH Proc Natl Acad Sci U S A; 2015 May; 112(19):E2477-86. PubMed ID: 25918418 [TBL] [Abstract][Full Text] [Related]
12. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Bräutigam A; Schliesky S; Külahoglu C; Osborne CP; Weber AP J Exp Bot; 2014 Jul; 65(13):3579-93. PubMed ID: 24642845 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Chang YM; Lin HH; Liu WY; Yu CP; Chen HJ; Wartini PP; Kao YY; Wu YH; Lin JJ; Lu MJ; Tu SL; Wu SH; Shiu SH; Ku MSB; Li WH Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3091-3099. PubMed ID: 30718437 [TBL] [Abstract][Full Text] [Related]
14. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO Kolbe AR; Studer AJ; Cornejo OE; Cousins AB BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781 [TBL] [Abstract][Full Text] [Related]
16. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. Wang Y; Chan KX; Long SP Plant J; 2021 Jul; 107(2):343-359. PubMed ID: 34087011 [TBL] [Abstract][Full Text] [Related]
17. Similar photosynthetic but different yield responses of C Li S; Leakey ADB; Moller CA; Montes CM; Sacks EJ; Lee D; Ainsworth EA Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2313591120. PubMed ID: 37948586 [TBL] [Abstract][Full Text] [Related]
18. The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Nomura M; Katayama K; Nishimura A; Ishida Y; Ohta S; Komari T; Miyao-Tokutomi M; Tajima S; Matsuoka M Plant Mol Biol; 2000 Sep; 44(1):99-106. PubMed ID: 11094984 [TBL] [Abstract][Full Text] [Related]
19. Compartmentation of photosynthesis gene expression in C4 maize depends on time of day. Borba AR; Reyna-Llorens I; Dickinson PJ; Steed G; Gouveia P; Górska AM; Gomes C; Kromdijk J; Webb AAR; Saibo NJM; Hibberd JM Plant Physiol; 2023 Nov; 193(4):2306-2320. PubMed ID: 37555432 [TBL] [Abstract][Full Text] [Related]
20. Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. Koester RP; Pignon CP; Kesler DC; Willison RS; Kang M; Shen Y; Priest HD; Begemann MB; Cook KA; Bannon GA; Oufattole M PLoS One; 2021; 16(2):e0246359. PubMed ID: 33539477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]