These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects. Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional printed models in congenital heart disease. Cantinotti M; Valverde I; Kutty S Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Schmauss D; Haeberle S; Hagl C; Sodian R Eur J Cardiothorac Surg; 2015 Jun; 47(6):1044-52. PubMed ID: 25161184 [TBL] [Abstract][Full Text] [Related]
9. 3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease. Mowers KL; Fullerton JB; Hicks D; Singh GK; Johnson MC; Anwar S Pediatr Cardiol; 2021 Jan; 42(1):131-141. PubMed ID: 33083888 [TBL] [Abstract][Full Text] [Related]
10. Cardiothoracic Applications of 3-dimensional Printing. Giannopoulos AA; Steigner ML; George E; Barile M; Hunsaker AR; Rybicki FJ; Mitsouras D J Thorac Imaging; 2016 Sep; 31(5):253-72. PubMed ID: 27149367 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Printing for Planning of Structural Heart Interventions. Wang DD; Gheewala N; Shah R; Levin D; Myers E; Rollet M; O'Neill WW Interv Cardiol Clin; 2018 Jul; 7(3):415-423. PubMed ID: 29983152 [TBL] [Abstract][Full Text] [Related]
12. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions? Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304 [TBL] [Abstract][Full Text] [Related]
13. Living the heart in three dimensions: applications of 3D printing in CHD. Forte MNV; Hussain T; Roest A; Gomez G; Jongbloed M; Simpson J; Pushparajah K; Byrne N; Valverde I Cardiol Young; 2019 Jun; 29(6):733-743. PubMed ID: 31198120 [TBL] [Abstract][Full Text] [Related]
14. Development of three-dimensional cardiac models from computed tomography angiography. Stieger-Vanegas SM; Scollan KF J Vet Cardiol; 2024 Feb; 51():195-206. PubMed ID: 38198977 [TBL] [Abstract][Full Text] [Related]
15. Impact of 3D Printouts in Optimizing Surgical Results for Complex Congenital Heart Disease. Han F; Co-Vu J; Lopez-Colon D; Forder J; Bleiweis M; Reyes K; DeGroff C; Chandran A World J Pediatr Congenit Heart Surg; 2019 Sep; 10(5):533-538. PubMed ID: 31496399 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use. Perens G; Chyu J; McHenry K; Yoshida T; Finn JP World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685 [TBL] [Abstract][Full Text] [Related]
17. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects. Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266 [No Abstract] [Full Text] [Related]