These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 26465291)
1. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Surnar B; Sharma K; Jayakannan M Nanoscale; 2015 Nov; 7(42):17964-79. PubMed ID: 26465291 [TBL] [Abstract][Full Text] [Related]
2. Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Surnar B; Jayakannan M Biomacromolecules; 2016 Dec; 17(12):4075-4085. PubMed ID: 27936725 [TBL] [Abstract][Full Text] [Related]
3. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
4. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms. Kulkarni B; Surnar B; Jayakannan M Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888 [TBL] [Abstract][Full Text] [Related]
5. Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy. Huang C; Neoh KG; Xu L; Kang ET; Chiong E Biomacromolecules; 2012 Aug; 13(8):2513-20. PubMed ID: 22793172 [TBL] [Abstract][Full Text] [Related]
6. Cisplatin-Stitched Polysaccharide Vesicles for Synergistic Cancer Therapy of Triple Antagonistic Drugs. Deshpande NU; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):113-126. PubMed ID: 28064505 [TBL] [Abstract][Full Text] [Related]
7. Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Cui C; Yu P; Wu M; Zhang Y; Liu L; Wu B; Wang CX; Zhuo RX; Huang SW Colloids Surf B Biointerfaces; 2015 May; 129():137-45. PubMed ID: 25843367 [TBL] [Abstract][Full Text] [Related]
8. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Shah M; Ullah N; Choi MH; Kim MO; Yoon SC Eur J Pharm Biopharm; 2012 Apr; 80(3):518-27. PubMed ID: 22178562 [TBL] [Abstract][Full Text] [Related]
9. Novel composite core-shell nanoparticles as busulfan carriers. Layre A; Couvreur P; Chacun H; Richard J; Passirani C; Requier D; Benoit JP; Gref R J Control Release; 2006 Apr; 111(3):271-80. PubMed ID: 16488504 [TBL] [Abstract][Full Text] [Related]
10. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
11. Length effect of methoxy poly(ethylene oxide)-b-[poly(ε-caprolactone)-g-poly(methacrylic acid)] copolymers on cisplatin delivery. Chen HY; Lo YL; Wu PL; Lo PC; Wang LF Colloids Surf B Biointerfaces; 2017 Aug; 156():243-253. PubMed ID: 28535473 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent ABC-Triblock Polymer Nanocarrier for Cisplatin Delivery to Cancer Cells. Kulkarni B; Malhotra M; Jayakannan M Chem Asian J; 2022 Mar; 17(5):e202101337. PubMed ID: 35001550 [TBL] [Abstract][Full Text] [Related]
13. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Xu P; Van Kirk EA; Li S; Murdoch WJ; Ren J; Hussain MD; Radosz M; Shen Y Colloids Surf B Biointerfaces; 2006 Mar; 48(1):50-7. PubMed ID: 16497489 [TBL] [Abstract][Full Text] [Related]
14. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells. Saxena S; Jayakannan M Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735 [TBL] [Abstract][Full Text] [Related]
15. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. Eatemadi A; Darabi M; Afraidooni L; Zarghami N; Daraee H; Eskandari L; Mellatyar H; Akbarzadeh A Artif Cells Nanomed Biotechnol; 2016 May; 44(3):1008-17. PubMed ID: 25707442 [TBL] [Abstract][Full Text] [Related]
16. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Hu Y; Xie J; Tong YW; Wang CH J Control Release; 2007 Mar; 118(1):7-17. PubMed ID: 17241684 [TBL] [Abstract][Full Text] [Related]
17. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Qian J; Xu M; Suo A; Xu W; Liu T; Liu X; Yao Y; Wang H Acta Biomater; 2015 Mar; 15():102-16. PubMed ID: 25545322 [TBL] [Abstract][Full Text] [Related]
18. A robust strategy for preparation of sequential stimuli-responsive block copolymer prodrugs via thiolactone chemistry to overcome multiple anticancer drug delivery barriers. Ke W; Yin W; Zha Z; Mukerabigwi JF; Chen W; Wang Y; He C; Ge Z Biomaterials; 2018 Feb; 154():261-274. PubMed ID: 29149720 [TBL] [Abstract][Full Text] [Related]
19. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Wang YC; Wang F; Sun TM; Wang J Bioconjug Chem; 2011 Oct; 22(10):1939-45. PubMed ID: 21866903 [TBL] [Abstract][Full Text] [Related]
20. Structural Engineering of Biodegradable PCL Block Copolymer Nanoassemblies for Enzyme-Controlled Drug Delivery in Cancer Cells. Surnar B; Jayakannan M ACS Biomater Sci Eng; 2016 Nov; 2(11):1926-1941. PubMed ID: 33440528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]