These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26465349)

  • 1. Biocorrosion of 316LV steel used in oral cavity due to Desulfotomaculum nigrificans bacteria.
    Mystkowska J; Ferreira JA; Leszczyńska K; Chmielewska S; Dąbrowski JR; Wieciński P; Kurzydłowski KJ
    J Biomed Mater Res B Appl Biomater; 2017 Jan; 105(1):222-229. PubMed ID: 26465349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria.
    Mystkowska J
    Acta Bioeng Biomech; 2016; 18(4):87-96. PubMed ID: 28133370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO
    Liu H; Meng G; Li W; Gu T; Liu H
    Front Microbiol; 2019; 10():1298. PubMed ID: 31244809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.
    Mystkowska J; Niemirowicz-Laskowska K; Łysik D; Tokajuk G; Dąbrowski JR; Bucki R
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29509686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.
    Wan H; Song D; Zhang D; Du C; Xu D; Liu Z; Ding D; Li X
    Bioelectrochemistry; 2018 Jun; 121():18-26. PubMed ID: 29329018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel.
    Pakiet M; Kowalczyk I; Leiva Garcia R; Moorcroft R; Nichol T; Smith T; Akid R; Brycki B
    Bioelectrochemistry; 2019 Aug; 128():252-262. PubMed ID: 31048108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiologically influenced corrosion: looking to the future.
    Videla HA; Herrera LK
    Int Microbiol; 2005 Sep; 8(3):169-80. PubMed ID: 16200495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of biofilms in the corrosion of steel in marine environments.
    Procópio L
    World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.
    Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M
    Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel.
    Ramos Monroy OA; Ruiz Ordaz N; Hernández Gayosso MJ; Juárez Ramírez C; Galíndez Mayer J
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29991-30002. PubMed ID: 31414386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of iron-oxidizing bacteria in biocorrosion: a review.
    Emerson D
    Biofouling; 2018 Oct; 34(9):989-1000. PubMed ID: 30642207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone reduces corrosion from Desulfotomaculum orientis.
    Ren D; Wood TK
    Environ Microbiol; 2004 May; 6(5):535-40. PubMed ID: 15049927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis.
    Khan MS; Yang C; Zhao Y; Pan H; Zhao J; Shahzad MB; Kolawole SK; Ullah I; Yang K
    Colloids Surf B Biointerfaces; 2020 May; 189():110858. PubMed ID: 32086021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater.
    Zhang T; Wang J; Li G; Liu H
    Bioelectrochemistry; 2021 Dec; 142():107933. PubMed ID: 34560601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view.
    Ma Y; Zhang Y; Zhang R; Guan F; Hou B; Duan J
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):515-525. PubMed ID: 31807887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrigendum: Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO
    Liu H; Meng G; Li W; Gu T; Liu H
    Front Microbiol; 2019; 10():1653. PubMed ID: 31379795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.