BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26465380)

  • 1. Cafestol, a Bioactive Substance in Coffee, Stimulates Insulin Secretion and Increases Glucose Uptake in Muscle Cells: Studies in Vitro.
    Mellbye FB; Jeppesen PB; Hermansen K; Gregersen S
    J Nat Prod; 2015 Oct; 78(10):2447-51. PubMed ID: 26465380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice.
    Mellbye FB; Jeppesen PB; Shokouh P; Laustsen C; Hermansen K; Gregersen S
    J Nat Prod; 2017 Aug; 80(8):2353-2359. PubMed ID: 28763212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5'AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.
    Tsuda S; Egawa T; Ma X; Oshima R; Kurogi E; Hayashi T
    J Nutr Biochem; 2012 Nov; 23(11):1403-9. PubMed ID: 22227267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review.
    Loureiro LMR; Reis CEG; da Costa THM
    Int J Sport Nutr Exerc Metab; 2018 May; 28(3):284-293. PubMed ID: 29345166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine.
    Johnston KL; Clifford MN; Morgan LM
    Am J Clin Nutr; 2003 Oct; 78(4):728-33. PubMed ID: 14522730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Combination of Coffee Compounds Shows Insulin-Sensitizing and Hepatoprotective Effects in a Rat Model of Diet-Induced Metabolic Syndrome.
    Shokouh P; Jeppesen PB; Hermansen K; Nørskov NP; Laustsen C; Jacques Hamilton-Dutoit S; Qi H; Stødkilde-Jørgensen H; Gregersen S
    Nutrients; 2017 Dec; 10(1):. PubMed ID: 29271886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells.
    Iwamoto H; Izumi K; Natsagdorj A; Naito R; Makino T; Kadomoto S; Hiratsuka K; Shigehara K; Kadono Y; Narimoto K; Saito Y; Nakagawa-Goto K; Mizokami A
    Prostate; 2019 Apr; 79(5):468-479. PubMed ID: 30569541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dynamic Effects of Isosteviol on Insulin Secretion and Its Inability to Counteract the Impaired β-Cell Function during Gluco-, Lipo-, and Aminoacidotoxicity: Studies In Vitro.
    Gu W; Rebsdorf A; Hermansen K; Gregersen S; Jeppesen PB
    Nutrients; 2018 Jan; 10(2):. PubMed ID: 29373526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective Effects of Coffee Bioactive Compounds: A Review.
    Socała K; Szopa A; Serefko A; Poleszak E; Wlaź P
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model.
    Shokouh P; Jeppesen PB; Hermansen K; Laustsen C; Stødkilde-Jørgensen H; Hamilton-Dutoit SJ; Søndergaard Schmedes M; Qi H; Stokholm Nørlinger T; Gregersen S
    Nutrients; 2018 Oct; 10(10):. PubMed ID: 30347674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells.
    Bhattacharya S; Oksbjerg N; Young JF; Jeppesen PB
    Diabetes Obes Metab; 2014 Jul; 16(7):602-12. PubMed ID: 24205999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coffee: biochemistry and potential impact on health.
    Ludwig IA; Clifford MN; Lean ME; Ashihara H; Crozier A
    Food Funct; 2014 Aug; 5(8):1695-717. PubMed ID: 24671262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance.
    van Dijk AE; Olthof MR; Meeuse JC; Seebus E; Heine RJ; van Dam RM
    Diabetes Care; 2009 Jun; 32(6):1023-5. PubMed ID: 19324944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coffee and type 2 diabetes: from beans to beta-cells.
    van Dam RM
    Nutr Metab Cardiovasc Dis; 2006 Jan; 16(1):69-77. PubMed ID: 16399494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coffee consumption and disease correlations.
    Gökcen BB; Şanlier N
    Crit Rev Food Sci Nutr; 2019; 59(2):336-348. PubMed ID: 28853910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is cafestol retained on the paper filter in the preparation of filter coffee?
    Rendón MY; Dos Santos Scholz MB; Bragagnolo N
    Food Res Int; 2017 Oct; 100(Pt 1):798-803. PubMed ID: 28873752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coffee consumption, obesity and type 2 diabetes: a mini-review.
    Santos RM; Lima DR
    Eur J Nutr; 2016 Jun; 55(4):1345-58. PubMed ID: 27026242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Diterpenes from Coffee, Cafestol, and Kahweol Induce Peripheral Antinoceception by Adrenergic System Interaction.
    Guzzo LS; Castor MG; Perez Ade C; Duarte ID; Romero TR
    Planta Med; 2016 Jan; 82(1-2):106-12. PubMed ID: 26460671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.
    Tunnicliffe JM; Eller LK; Reimer RA; Hittel DS; Shearer J
    Appl Physiol Nutr Metab; 2011 Oct; 36(5):650-9. PubMed ID: 21977912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a coffee lipid (cafestol) on regulation of lipid metabolism in CaCo-2 cells.
    Ranheim T; Halvorsen B; Huggett AC; Blomhoff R; Drevon CA
    J Lipid Res; 1995 Oct; 36(10):2079-89. PubMed ID: 8576635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.