These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26465443)

  • 1. Quantum Otto cycle efficiency on coupled qudits.
    Ivanchenko EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032124. PubMed ID: 26465443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F; Müstecaplıoğlu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum correlated heat engine with spin squeezing.
    Altintas F; Hardal AÜ; Müstecaplıoglu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032102. PubMed ID: 25314390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled quantum Otto cycle.
    Thomas G; Johal RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031135. PubMed ID: 21517482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
    Johal RS; Mehta V
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Brayton cycle with coupled systems as working substance.
    Huang XL; Wang LC; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012144. PubMed ID: 23410319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures.
    de Assis RJ; de Mendonça TM; Villas-Boas CJ; de Souza AM; Sarthour RS; Oliveira IS; de Almeida NG
    Phys Rev Lett; 2019 Jun; 122(24):240602. PubMed ID: 31322364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Otto engine with exchange coupling in the presence of level degeneracy.
    Mehta V; Johal RS
    Phys Rev E; 2017 Sep; 96(3-1):032110. PubMed ID: 29346897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otto Engine: Classical and Quantum Approach.
    Peña FJ; Negrete O; Cortés N; Vargas P
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels.
    de Oliveira TR; Jonathan D
    Phys Rev E; 2021 Oct; 104(4-1):044133. PubMed ID: 34781508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of quantum Otto and Carnot engines powered by a spin working substance.
    Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S
    Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF; de Oliveira TR; Jonathan D
    Phys Rev E; 2024 Jun; 109(6-1):064129. PubMed ID: 39021004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum afterburner: improving the efficiency of an ideal heat engine.
    Scully MO
    Phys Rev Lett; 2002 Feb; 88(5):050602. PubMed ID: 11863710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine.
    Purkait C; Chand S; Biswas A
    Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.