These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26465476)

  • 1. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.
    Lamorgese A; Mauri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032401. PubMed ID: 26465476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates.
    Cabezas MG; Bateni A; Montanero JM; Neumann AW
    Langmuir; 2006 Nov; 22(24):10053-60. PubMed ID: 17106999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Eotvos numbers for buoyancy-induced oil drop detachment based on shape analysis.
    Chatterjee J
    Adv Colloid Interface Sci; 2002 Aug; 98(3):265-83. PubMed ID: 12206197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of gravity-induced trapping of a deformable drop in a three-dimensional constriction.
    Ratcliffe T; Zinchenko AZ; Davis RH
    J Colloid Interface Sci; 2012 Oct; 383(1):167-76. PubMed ID: 22795042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape analysis based critical Eotvos numbers for buoyancy induced partial detachment of oil drops from hydrophilic surfaces.
    Chatterjee J
    Adv Colloid Interface Sci; 2002 Oct; 99(2):163-79. PubMed ID: 12405398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of a compound sessile drop at the axisymmetric configuration.
    Zhang Y; Chatain D; Anna SL; Garoff S
    J Colloid Interface Sci; 2016 Jan; 462():88-99. PubMed ID: 26433481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles.
    Ramé E; Garoff S
    J Colloid Interface Sci; 1996 Jan; 177(1):234-244. PubMed ID: 10479437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-anisotropic particles at curved fluid interfaces and role of Laplace pressure: a computational study.
    Cheng TL; Wang YU
    J Colloid Interface Sci; 2013 Jul; 402():267-78. PubMed ID: 23628204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible equilibrium shapes of static pendant drops.
    Sumesh PT; Govindarajan R
    J Chem Phys; 2010 Oct; 133(14):144707. PubMed ID: 20950030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-gradient based algorithm for the determination of surface tension from a pendant drop: application to low Bond number drop shapes.
    Alvarez NJ; Walker LM; Anna SL
    J Colloid Interface Sci; 2009 May; 333(2):557-62. PubMed ID: 19261289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.
    Anjali TG; Basavaraj MG
    J Colloid Interface Sci; 2016 Sep; 478():63-71. PubMed ID: 27285780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element based algorithm for determining interfacial tension (gamma) from pendant drop profiles.
    Dingle NM; Tjiptowidjojo K; Basaran OA; Harris MT
    J Colloid Interface Sci; 2005 Jun; 286(2):647-60. PubMed ID: 15897084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and Disappearance of Solvent Drops on Miscible Polymer Subphases.
    Stetten AZ; Treece BW; Corcoran TE; Garoff S; Przybycien TM; Tilton RD;
    Colloids Surf A Physicochem Eng Asp; 2018 Jun; 546():266-275. PubMed ID: 30416264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the corrugation of the three-phase contact line perpendicular to a chemically striped substrate.
    Ruiz-Cabello FJ; Kusumaatmaja H; Rodríguez-Valverde MA; Yeomans J; Cabrerizo-Vílchez MA
    Langmuir; 2009 Jul; 25(14):8357-61. PubMed ID: 19594192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.