These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26465505)
41. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Cao C; Ying YL; Hu ZL; Liao DF; Tian H; Long YT Nat Nanotechnol; 2016 Aug; 11(8):713-8. PubMed ID: 27111839 [TBL] [Abstract][Full Text] [Related]
42. MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells. Ge Y; Xian J; Kang M; Li X; Jin M Comput Math Methods Med; 2016; 2016():2787382. PubMed ID: 27446233 [TBL] [Abstract][Full Text] [Related]
43. Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule. Kurz V; Nelson EM; Shim J; Timp G ACS Nano; 2013 May; 7(5):4057-69. PubMed ID: 23607372 [TBL] [Abstract][Full Text] [Related]
44. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore. Liu J; Pham P; Haguet V; Sauter-Starace F; Leroy L; Roget A; Descamps E; Bouchet A; Buhot A; Mailley P; Livache T Anal Chem; 2012 Apr; 84(7):3254-61. PubMed ID: 22364436 [TBL] [Abstract][Full Text] [Related]
45. Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores. Forrey C; Muthukumar M J Chem Phys; 2007 Jul; 127(1):015102. PubMed ID: 17627369 [TBL] [Abstract][Full Text] [Related]
47. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics. Freedman KJ; Bastian AR; Chaiken I; Kim MJ Small; 2013 Mar; 9(5):750-9. PubMed ID: 23074081 [TBL] [Abstract][Full Text] [Related]
48. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. Willems K; Ruić D; Biesemans A; Galenkamp NS; Van Dorpe P; Maglia G ACS Nano; 2019 Sep; 13(9):9980-9992. PubMed ID: 31403770 [TBL] [Abstract][Full Text] [Related]
49. Fabrication and characterization of nanopore-interfaced nanochannel devices. Zhang Y; Reisner W Nanotechnology; 2015 Nov; 26(45):455301. PubMed ID: 26472174 [TBL] [Abstract][Full Text] [Related]
57. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin. Li T; Liu L; Li Y; Xie J; Wu HC Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821 [TBL] [Abstract][Full Text] [Related]
58. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614 [TBL] [Abstract][Full Text] [Related]
59. Direct force measurements on double-stranded RNA in solid-state nanopores. van den Hout M; Vilfan ID; Hage S; Dekker NH Nano Lett; 2010 Feb; 10(2):701-7. PubMed ID: 20050676 [TBL] [Abstract][Full Text] [Related]
60. Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Han A; Creus M; Schürmann G; Linder V; Ward TR; de Rooij NF; Staufer U Anal Chem; 2008 Jun; 80(12):4651-8. PubMed ID: 18470996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]