These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26465505)
81. Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. Acharya A; Prajapati JD; Kleinekathöfer U J Phys Chem B; 2022 Jun; 126(22):3995-4008. PubMed ID: 35616602 [TBL] [Abstract][Full Text] [Related]
82. The effect of the initial temperature, pressure, and shape of carbon nanopores on the separation process of SiO Mei B; Jasim DJ; Alizadeh A; Hekmatifar M; Nasajpour-Esfahani N; Salahshour S; Sabetvand R; Toghraie D Chemosphere; 2024 Feb; 349():140966. PubMed ID: 38109972 [TBL] [Abstract][Full Text] [Related]
83. Wireless Bipolar Nanopore Electrode for Single Small Molecule Detection. Gao R; Ying YL; Hu YX; Li YJ; Long YT Anal Chem; 2017 Jul; 89(14):7382-7387. PubMed ID: 28653531 [TBL] [Abstract][Full Text] [Related]
84. Pressure-voltage trap for DNA near a solid-state nanopore. Hoogerheide DP; Lu B; Golovchenko JA ACS Nano; 2014 Jul; 8(7):7384-91. PubMed ID: 24933128 [TBL] [Abstract][Full Text] [Related]
85. 3D flow field measurements outside nanopores. Mc Hugh J; Thorneywork AL; Andresen K; Keyser UF Rev Sci Instrum; 2022 May; 93(5):054106. PubMed ID: 35649783 [TBL] [Abstract][Full Text] [Related]
86. Enhanced Nanoparticle Sensing in a Highly Viscous Nanopore. Kawaguchi T; Tsutsui M; Murayama S; Leong IW; Yokota K; Komoto Y; Taniguchi M Small Methods; 2024 Aug; 8(8):e2301523. PubMed ID: 38725330 [TBL] [Abstract][Full Text] [Related]
88. Moving dynamics of a nanorobot with three DNA legs on nanopore-based tracks. Sun LZ; Ying YJ Nanoscale; 2023 Oct; 15(38):15794-15809. PubMed ID: 37740362 [TBL] [Abstract][Full Text] [Related]
89. Optimal voltage for nanoparticle detection with thin nanopores. Qiu Y Analyst; 2018 Oct; 143(19):4638-4645. PubMed ID: 30167601 [TBL] [Abstract][Full Text] [Related]
90. Enhanced Signal to Noise Ratio Enables High Bandwidth Nanopore Recordings and Molecular Weight Profiling of Proteins. Bandara YMNDY; Freedman KJ ACS Nano; 2022 Sep; 16(9):14111-14120. PubMed ID: 36107037 [TBL] [Abstract][Full Text] [Related]
91. Understanding Electrophoresis and Electroosmosis in Nanopore Sensing with the Help of the Nanopore Electro-Osmotic Trap. Wen C; Schmid S; Dekker C ACS Nano; 2024 Jul; 18(31):20449-58. PubMed ID: 39051760 [TBL] [Abstract][Full Text] [Related]
92. Intrinsic fractional noise in nanopores: The effect of reservoirs. Marbach S J Chem Phys; 2021 May; 154(17):171101. PubMed ID: 34241056 [TBL] [Abstract][Full Text] [Related]
93. Surface-particle interactions control the escape time of a particle from a nanopore-gated nanocavity system: a coarse grained simulation. Zando R; Chinappi M; Giordani C; Cecconi F; Zhang Z Nanoscale; 2023 Jul; 15(26):11107-11114. PubMed ID: 37337765 [TBL] [Abstract][Full Text] [Related]
94. Fabrication and characterization of nanopore-interfaced nanochannel devices. Zhang Y; Reisner W Nanotechnology; 2015 Nov; 26(45):455301. PubMed ID: 26472174 [TBL] [Abstract][Full Text] [Related]
95. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. Ge Y; Cui M; Zhang Q; Wang Y; Xi D Nanoscale Adv; 2022 Sep; 4(18):3883-3891. PubMed ID: 36133334 [TBL] [Abstract][Full Text] [Related]
96. Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. Wang S; Liang L; Tang J; Cai Y; Zhao C; Fang S; Wang H; Weng T; Wang L; Wang D RSC Adv; 2020 Jul; 10(45):27215-27224. PubMed ID: 35515777 [TBL] [Abstract][Full Text] [Related]
97. The Nanopore-Tweezing-Based, Targeted Detection of Nucleobases on Short Functionalized Peptide Nucleic Acid Sequences. Dragomir IS; Asandei A; Schiopu I; Bucataru IC; Mereuta L; Luchian T Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33918592 [TBL] [Abstract][Full Text] [Related]
98. Analytical Model for Particle Capture in Nanopores Elucidates Competition among Electrophoresis, Electroosmosis, and Dielectrophoresis. Chinappi M; Yamaji M; Kawano R; Cecconi F ACS Nano; 2020 Nov; 14(11):15816-15828. PubMed ID: 33170650 [TBL] [Abstract][Full Text] [Related]
99. Application of Solid-State Nanopore in Protein Detection. Luo Y; Wu L; Tu J; Lu Z Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316558 [TBL] [Abstract][Full Text] [Related]
100. Different Anomeric Sugar Bound States of Maltose Binding Protein Resolved by a Cytolysin A Nanopore Tweezer. Li X; Lee KH; Shorkey S; Chen J; Chen M ACS Nano; 2020 Feb; 14(2):1727-1737. PubMed ID: 31995359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]