BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26465557)

  • 1. Prediction of noninertial focusing of red blood cells in Poiseuille flow.
    Hariprasad DS; Secomb TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033008. PubMed ID: 26465557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesicles in Poiseuille flow.
    Danker G; Vlahovska PM; Misbah C
    Phys Rev Lett; 2009 Apr; 102(14):148102. PubMed ID: 19392488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056308. PubMed ID: 23214877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tank-treading of swollen erythrocytes in shear flows.
    Dodson WR; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021922. PubMed ID: 22463259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016307. PubMed ID: 22400658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional analysis of two-file flow of red cells along capillaries.
    Sugihara-Seki M; Secomb TW; Skalak R
    Microvasc Res; 1990 Nov; 40(3):379-93. PubMed ID: 2084502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations.
    Barber JO; Alberding JP; Restrepo JM; Secomb TW
    Ann Biomed Eng; 2008 Oct; 36(10):1690-8. PubMed ID: 18686035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of asymmetric flows of red blood cells in capillaries.
    Sugihara-Seki M; Skalak R
    Microvasc Res; 1988 Jul; 36(1):64-74. PubMed ID: 3185304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Microvasc Res; 2009 May; 77(3):265-72. PubMed ID: 19323969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow.
    Farutin A; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042709. PubMed ID: 24827280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.