These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26465590)

  • 1. Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors.
    Ali MA; Geng Y; Cavaye H; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chem Commun (Camb); 2015 Dec; 51(98):17406-9. PubMed ID: 26465590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response.
    Chen M; Chu R; Kistemaker JCM; Burn PL; Gentle IR; Shaw PE
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56386-56396. PubMed ID: 37982219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
    Ali MA; Shoaee S; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chemphyschem; 2016 Nov; 17(21):3350-3353. PubMed ID: 27583839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable, rapid and simple voltammetric detection of urea nitrate explosive.
    Cagan A; Lu D; Cizek K; La Belle J; Wang J
    Analyst; 2008 May; 133(5):585-7. PubMed ID: 18427677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films.
    Geng Y; Ali MA; Clulow AJ; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Nat Commun; 2015 Sep; 6():8240. PubMed ID: 26370931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?
    Shaw PE; Burn PL
    Phys Chem Chem Phys; 2017 Nov; 19(44):29714-29730. PubMed ID: 28850131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry.
    Cavaye H; Smith AR; James M; Nelson A; Burn PL; Gentle IR; Lo SC; Meredith P
    Langmuir; 2009 Nov; 25(21):12800-5. PubMed ID: 19610640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-Dynamic Kinetics of Vapour Sampling in the Detection of Explosives.
    Gruznov VM; Vorozhtsov AB
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31816831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films.
    Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL
    Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysics of detection of explosive vapours via luminescence quenching of thin films: impact of inter-molecular interactions.
    Shoaee S; Fan S; Burn PL; Shaw PE
    Phys Chem Chem Phys; 2016 Sep; 18(37):25861-25868. PubMed ID: 27722459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple thermodynamic approach to predict responses from polymer-coated quartz crystal microbalance sensors exposed to organic vapors.
    Palmas P; Klingenfus J; Vedeau B; Girard E; Montmeat P; Hairault L; Pradier CM; Méthivier C
    Talanta; 2013 Oct; 115():616-23. PubMed ID: 24054640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.
    Ma J; Lv L; Zou G; Zhang Q
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):241-9. PubMed ID: 25487515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.
    Gole B; Bar AK; Mukherjee PS
    Chem Commun (Camb); 2011 Nov; 47(44):12137-9. PubMed ID: 21993497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-directed synthesis of silica nanotubes for explosive detection.
    Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ amperometric biosensor for the detection of vapours from explosive compounds.
    Gwenin CD; Kalaji M; Kay CM; Williams PA; Tito DN
    Analyst; 2008 May; 133(5):621-5. PubMed ID: 18427683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors.
    Deng C; He Q; He C; Shi L; Cheng J; Lin T
    J Phys Chem B; 2010 Apr; 114(13):4725-30. PubMed ID: 20222703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.
    Ayad MM; El-Hefnawey G; Torad NL
    J Hazard Mater; 2009 Aug; 168(1):85-8. PubMed ID: 19264405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.