These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26465606)

  • 21. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
    Peng R; Li D
    J Colloid Interface Sci; 2015 Feb; 440():126-32. PubMed ID: 25460698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroosmotic velocity and electric conductivity in a fibrous porous medium in the transverse direction.
    Keh HJ; Wu YY
    J Phys Chem B; 2011 Jul; 115(29):9168-78. PubMed ID: 21671618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus.
    Shenoy A; Chakraborty J; Chakraborty S
    Electrophoresis; 2013 Mar; 34(5):691-9. PubMed ID: 23192458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced capture of magnetic microbeads using combination of reduced magnetic field strength and sequentially switched electroosmotic flow--a numerical study.
    Das D; Al-Rjoub MF; Banerjee RK
    J Biomech Eng; 2015 May; 137(5):051008. PubMed ID: 25662030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface instability of a thin electrolyte film undergoing coupled electroosmotic and electrophoretic flows in a microfluidic channel.
    Ray B; Reddy PD; Bandyopadhyay D; Joo SW; Sharma A; Qian S; Biswas G
    Electrophoresis; 2011 Nov; 32(22):3257-67. PubMed ID: 22038622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Maheedhara RS; Sachar HS; Jing H; Das S
    J Phys Chem B; 2018 Jul; 122(29):7450-7461. PubMed ID: 29969567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: an analytical approach.
    Bandopadhyay A; Goswami P; Chakraborty S
    J Chem Phys; 2013 Dec; 139(22):224503. PubMed ID: 24329074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances.
    Bandopadhyay A; Shaik VA; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042307. PubMed ID: 25974491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrokinetic flow near an undulated, charged surface.
    Lin SH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):224-34. PubMed ID: 20675104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.
    Hu Y; Werner C; Li D
    J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined Effects of Zeta-potential and Temperature of Nanopores on Diffusioosmotic Ion Transport.
    Lee J; Lee K; Wang C; Ha D; Kim GH; Park J; Kim T
    Anal Chem; 2021 Oct; 93(42):14169-14177. PubMed ID: 34644049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels.
    Bandopadhyay A; Chakraborty S
    Electrophoresis; 2013 Aug; 34(15):2193-8. PubMed ID: 23712911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.