These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 26465614)
1. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain. Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461 [TBL] [Abstract][Full Text] [Related]
3. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system. Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387 [TBL] [Abstract][Full Text] [Related]
4. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport. Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394 [TBL] [Abstract][Full Text] [Related]
5. Sampling tissue volumes using frequency-domain photon migration. Bevilacqua F; You JS; Hayakawa CK; Venugopalan V Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051908. PubMed ID: 15244848 [TBL] [Abstract][Full Text] [Related]
6. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. Liu Q; Ramanujam N J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287 [TBL] [Abstract][Full Text] [Related]
7. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. Hart VP; Doyle TE Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080 [TBL] [Abstract][Full Text] [Related]
8. Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects. Bouza Domínguez J; Bérubé-Lauzière Y Appl Opt; 2010 Mar; 49(8):1414-29. PubMed ID: 20220899 [TBL] [Abstract][Full Text] [Related]
9. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880 [TBL] [Abstract][Full Text] [Related]
10. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
11. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the Monte Carlo code for modeling of photon migration in tissue. Zołek NS; Liebert A; Maniewski R Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201 [TBL] [Abstract][Full Text] [Related]
13. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials. Shi Z; Anderson CA J Pharm Sci; 2010 May; 99(5):2399-412. PubMed ID: 19967783 [TBL] [Abstract][Full Text] [Related]
14. Photon migration through fetal head in utero using continuous wave, near-infrared spectroscopy: development and evaluation of experimental and numerical models. Vishnoi G; Hielscher AH; Ramanujam N; Chance B J Biomed Opt; 2000 Apr; 5(2):163-72. PubMed ID: 10938780 [TBL] [Abstract][Full Text] [Related]
15. Approximate P3 solution for the semi-infinite medium: steady state and time domain. Wang X J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28914007 [TBL] [Abstract][Full Text] [Related]
16. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory. Voit F; Hohmann A; Schäfer J; Kienle A J Biomed Opt; 2012 Apr; 17(4):045003. PubMed ID: 22559677 [TBL] [Abstract][Full Text] [Related]
17. Probing deep tissues with laser-induced thermotherapy using near-infrared light. Lopes A; Gomes R; Castiñeras M; Coelho JMP; Santos JP; Vieira P Lasers Med Sci; 2020 Feb; 35(1):43-49. PubMed ID: 31098938 [TBL] [Abstract][Full Text] [Related]
18. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. Wang L; Jacques SL J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159 [TBL] [Abstract][Full Text] [Related]
19. Closed-form solution of the steady-state photon diffusion equation in the presence of absorbing inclusions. Esposito R; Martelli F; De Nicola S Opt Lett; 2014 Feb; 39(4):826-9. PubMed ID: 24562217 [TBL] [Abstract][Full Text] [Related]
20. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study. Duadi H; Fixler D; Popovtzer R J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]