BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26465652)

  • 1. Metalloenzyme-Like Zeolites as Lewis Acid Catalysts for C-C Bond Formation.
    Van de Vyver S; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12554-61. PubMed ID: 26465652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Asymmetric Hetero-Diels-Alder Reactions of Carbonyl Compounds and Imines.
    Jørgensen KA
    Angew Chem Int Ed Engl; 2000 Oct; 39(20):3558-3588. PubMed ID: 11091406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes.
    Moliner M
    Dalton Trans; 2014 Mar; 43(11):4197-208. PubMed ID: 24142026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.
    Luo HY; Lewis JD; Román-Leshkov Y
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():663-92. PubMed ID: 27146555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1R)-(+)-camphor and acetone derived alpha'-hydroxy enones in asymmetric Diels-Alder reaction: catalytic activation by Lewis and Brønsted acids, substrate scope, applications in syntheses, and mechanistic studies.
    Bañuelos P; García JM; Gómez-Bengoa E; Herrero A; Odriozola JM; Oiarbide M; Palomo C; Razkin J
    J Org Chem; 2010 Mar; 75(5):1458-73. PubMed ID: 20121243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.
    Schmidt RK; Müther K; Mück-Lichtenfeld C; Grimme S; Oestreich M
    J Am Chem Soc; 2012 Mar; 134(9):4421-8. PubMed ID: 22309027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol.
    Opanasenko M; Dhakshinamoorthy A; Hwang YK; Chang JS; Garcia H; Čejka J
    ChemSusChem; 2013 May; 6(5):865-71. PubMed ID: 23592600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.
    Neurock M; Tao Z; Chemburkar A; Hibbitts DD; Iglesia E
    Faraday Discuss; 2017 Apr; 197():59-86. PubMed ID: 28332665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbocations as Lewis acid catalysts in Diels-Alder and Michael addition reactions.
    Bah J; Franzén J
    Chemistry; 2014 Jan; 20(4):1066-72. PubMed ID: 24375806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-bound cationic ruthenium complexes as novel heterogeneous lewis acid catalysts for Diels-Alder and aldol reactions.
    Mori K; Hara T; Mizugaki T; Ebitani K; Kaneda K
    J Am Chem Soc; 2003 Sep; 125(38):11460-1. PubMed ID: 13129324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites.
    Tolborg S; Meier S; Saravanamurugan S; Fristrup P; Taarning E; Sádaba I
    ChemSusChem; 2016 Nov; 9(21):3054-3061. PubMed ID: 27562820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of novel dendritic 2,2'-bipyridine ligands and their application to Lewis acid-catalyzed diels-alder and three-component condensation reactions.
    Muraki T; Fujita K; Kujime M
    J Org Chem; 2007 Oct; 72(21):7863-70. PubMed ID: 17887698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics.
    Brus J; Kobera L; Schoefberger W; Urbanová M; Klein P; Sazama P; Tabor E; Sklenak S; Fishchuk AV; Dědeček J
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):541-5. PubMed ID: 25393612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C-H acid.
    Gatzenmeier T; van Gemmeren M; Xie Y; Höfler D; Leutzsch M; List B
    Science; 2016 Feb; 351(6276):949-52. PubMed ID: 26917765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    Chem Soc Rev; 2015 Oct; 44(20):7025-43. PubMed ID: 25917850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraparticle Diffusional versus Site Effects on Reaction Pathways in Liquid-Phase Cross Aldol Reactions.
    Ponnuru K; Manayil JC; Cho HJ; Fan W; Wilson K; Jentoft FC
    Chemphyschem; 2018 Feb; 19(4):386-401. PubMed ID: 29316166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-free, noncovalent catalysis of diels-alder reactions by neutral hydrogen bond donors in organic solvents and in water.
    Wittkopp A; Schreiner PR
    Chemistry; 2003 Jan; 9(2):407-14. PubMed ID: 12532289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.
    Teixeira IF; Lo BT; Kostetskyy P; Stamatakis M; Ye L; Tang CC; Mpourmpakis G; Tsang SC
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13061-13066. PubMed ID: 27490584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites.
    Horike S; Dinca M; Tamaki K; Long JR
    J Am Chem Soc; 2008 May; 130(18):5854-5. PubMed ID: 18399629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.