These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26465729)

  • 1. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.
    Rodrigues PM; Silva JO; Eisenlohr PV; Schaefer CE
    Braz J Biol; 2015 Aug; 75(3):679-84. PubMed ID: 26465729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.
    Lima RB; Bufalino L; Alves FT; Silva JAAD; Ferreira RLC
    An Acad Bras Cienc; 2017; 89(2):1189-1203. PubMed ID: 28640356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning.
    Deb JC; Phinn S; Butt N; McAlpine CA
    Environ Manage; 2017 Sep; 60(3):422-435. PubMed ID: 28474209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil.
    Santos RM; Oliveira-Filho AT; Eisenlohr PV; Queiroz LP; Cardoso DB; Rodal MJ
    Ecol Evol; 2012 Feb; 2(2):409-28. PubMed ID: 22423333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies.
    Silva JLSE; Cruz-Neto O; Peres CA; Tabarelli M; Lopes AV
    PLoS One; 2019; 14(5):e0217028. PubMed ID: 31141533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mountain landscapes offer few opportunities for high-elevation tree species migration.
    Bell DM; Bradford JB; Lauenroth WK
    Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).
    Gonçalves GSR; Cerqueira PV; Brasil LS; Santos MPD
    PLoS One; 2017; 12(4):e0176066. PubMed ID: 28441412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demographical history and palaeodistribution modelling show range shift towards Amazon Basin for a Neotropical tree species in the LGM.
    Vitorino LC; Lima-Ribeiro MS; Terribile LC; Collevatti RG
    BMC Evol Biol; 2016 Oct; 16(1):213. PubMed ID: 27737632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation.
    Prieto-Torres DA; Navarro-Sigüenza AG; Santiago-Alarcon D; Rojas-Soto OR
    Glob Chang Biol; 2016 Jan; 22(1):364-79. PubMed ID: 26367278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.
    Power MJ; Whitney BS; Mayle FE; Neves DM; de Boer EJ; Maclean KS
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The history of Seasonally Dry Tropical Forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae).
    Caetano S; Prado D; Pennington RT; Beck S; Oliveira-Filho A; Spichiger R; Naciri Y
    Mol Ecol; 2008 Jul; 17(13):3147-59. PubMed ID: 18522691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas.
    Wright JL; Bomfim B; Wong CI; Marimon-Júnior BH; Marimon BS; Silva LCR
    Glob Chang Biol; 2021 Jan; 27(1):136-150. PubMed ID: 33128306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.
    Wang WJ; He HS; Thompson FR; Spetich MA; Fraser JS
    Sci Total Environ; 2018 Sep; 634():1214-1221. PubMed ID: 29710627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis.
    de Melo WA; Lima-Ribeiro MS; Terribile LC; Collevatti RG
    PLoS One; 2016; 11(7):e0159314. PubMed ID: 27458982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of Neotropical Sicarius sand spiders suggests frequent transitions from deserts to dry forests despite antique, broad-scale niche conservatism.
    Magalhaes ILF; Neves DM; Santos FR; Vidigal THDA; Brescovit AD; Santos AJ
    Mol Phylogenet Evol; 2019 Nov; 140():106569. PubMed ID: 31362083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional response of Amazon forests to climate change.
    Esquivel-Muelbert A; Baker TR; Dexter KG; Lewis SL; Brienen RJW; Feldpausch TR; Lloyd J; Monteagudo-Mendoza A; Arroyo L; Álvarez-Dávila E; Higuchi N; Marimon BS; Marimon-Junior BH; Silveira M; Vilanova E; Gloor E; Malhi Y; Chave J; Barlow J; Bonal D; Davila Cardozo N; Erwin T; Fauset S; Hérault B; Laurance S; Poorter L; Qie L; Stahl C; Sullivan MJP; Ter Steege H; Vos VA; Zuidema PA; Almeida E; Almeida de Oliveira E; Andrade A; Vieira SA; Aragão L; Araujo-Murakami A; Arets E; Aymard C GA; Baraloto C; Camargo PB; Barroso JG; Bongers F; Boot R; Camargo JL; Castro W; Chama Moscoso V; Comiskey J; Cornejo Valverde F; Lola da Costa AC; Del Aguila Pasquel J; Di Fiore A; Fernanda Duque L; Elias F; Engel J; Flores Llampazo G; Galbraith D; Herrera Fernández R; Honorio Coronado E; Hubau W; Jimenez-Rojas E; Lima AJN; Umetsu RK; Laurance W; Lopez-Gonzalez G; Lovejoy T; Aurelio Melo Cruz O; Morandi PS; Neill D; Núñez Vargas P; Pallqui Camacho NC; Parada Gutierrez A; Pardo G; Peacock J; Peña-Claros M; Peñuela-Mora MC; Petronelli P; Pickavance GC; Pitman N; Prieto A; Quesada C; Ramírez-Angulo H; Réjou-Méchain M; Restrepo Correa Z; Roopsind A; Rudas A; Salomão R; Silva N; Silva Espejo J; Singh J; Stropp J; Terborgh J; Thomas R; Toledo M; Torres-Lezama A; Valenzuela Gamarra L; van de Meer PJ; van der Heijden G; van der Hout P; Vasquez Martinez R; Vela C; Vieira ICG; Phillips OL
    Glob Chang Biol; 2019 Jan; 25(1):39-56. PubMed ID: 30406962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran).
    Ahmadi K; Alavi SJ; Amiri GZ; Hosseini SM; Serra-Diaz JM; Svenning JC
    Int J Biometeorol; 2020 Sep; 64(9):1451-1462. PubMed ID: 32518999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
    Yang X; Zheng JH; Mu C; Lin J
    Zhongguo Zhong Yao Za Zhi; 2017 Feb; 42(3):450-455. PubMed ID: 28952248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest.
    Câmara T; Leal IR; Blüthgen N; Oliveira FMP; Queiroz RT; Arnan X
    J Anim Ecol; 2018 Jul; 87(4):1022-1033. PubMed ID: 29504629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of plant functional traits to aridity in a tropical dry forest.
    de Oliveira ACP; Nunes A; Rodrigues RG; Branquinho C
    Sci Total Environ; 2020 Dec; 747():141177. PubMed ID: 32795793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.