BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26465746)

  • 1. Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose.
    Chen Z; Sun H; Huang J; Wu Y; Liu D
    PLoS One; 2015; 10(10):e0140508. PubMed ID: 26465746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological production of 2-butanone in Escherichia coli.
    Yoneda H; Tantillo DJ; Atsumi S
    ChemSusChem; 2014 Jan; 7(1):92-5. PubMed ID: 24193695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Engineered Glycerol Dehydratase With Improved Activity for the Conversion of meso-2,3-butanediol to Butanone.
    Maddock DJ; Gerth ML; Patrick WM
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28881100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificities of reactivating factors for adenosylcobalamin-dependent diol dehydratase and glycerol dehydratase.
    Tobimatsu T; Kajiura H; Toraya T
    Arch Microbiol; 2000; 174(1-2):81-8. PubMed ID: 10985746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of diol dehydratase from pdu operon on glycerol catabolism in Klebsiella pneumoniae.
    Shu L; Wang Q; Jiang W; Tišma M; Oh B; Shi J; Lye GJ; Baganz F; Wei D; Hao J
    Enzyme Microb Technol; 2022 Jun; 157():110021. PubMed ID: 35231673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel.
    Chen Z; Wu Y; Huang J; Liu D
    Bioresour Technol; 2015 Dec; 197():260-5. PubMed ID: 26342337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases.
    Forage RG; Foster MA
    J Bacteriol; 1982 Feb; 149(2):413-9. PubMed ID: 7035429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical evidence for the difference between coenzyme-B12-dependent diol dehydratase and glycerol dehydratase.
    Toraya T; Fukui S
    Eur J Biochem; 1977 Jun; 76(1):285-9. PubMed ID: 407082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures.
    Knietsch A; Bowien S; Whited G; Gottschalk G; Daniel R
    Appl Environ Microbiol; 2003 Jun; 69(6):3048-60. PubMed ID: 12788698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
    Matsubara M; Urano N; Yamada S; Narutaki A; Fujii M; Kataoka M
    J Biosci Bioeng; 2016 Oct; 122(4):421-6. PubMed ID: 27072298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli.
    Jain R; Yan Y
    Microb Cell Fact; 2011 Nov; 10():97. PubMed ID: 22074179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.
    Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y
    Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase.
    Toraya T; Honda S; Fukui S
    J Bacteriol; 1979 Jul; 139(1):39-47. PubMed ID: 378959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes.
    Daniel R; Bobik TA; Gottschalk G
    FEMS Microbiol Rev; 1998 Dec; 22(5):553-66. PubMed ID: 9990728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and characterization of hybrid dehydratases between adenosylcobalamin-dependent diol and glycerol dehydratases.
    Sakai T; Yamasaki A; Toyofuku S; Nishiki T; Yunoki M; Komoto N; Tobimatsu T; Toraya T
    J Nutr Sci Vitaminol (Tokyo); 2007 Apr; 53(2):102-8. PubMed ID: 17615996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning, sequencing and characterization of the genes for adenosylcobalamin-dependent diol dehydratase of Klebsiella pneumoniae.
    Tobimatsu T; Azuma M; Hayashi S; Nishimoto K; Toraya T
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1774-7. PubMed ID: 9805380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii.
    Seifert C; Bowien S; Gottschalk G; Daniel R
    Eur J Biochem; 2001 Apr; 268(8):2369-78. PubMed ID: 11298756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose.
    Lama S; Seol E; Park S
    Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of the coenzyme B-12-dependent dehydratases of Klebsiella sp. and Citrobacter freundii.
    Forage RG; Foster MA
    Biochim Biophys Acta; 1979 Aug; 569(2):249-58. PubMed ID: 383154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengthening the TCA cycle to alleviate metabolic stress due to blocking by-products synthesis pathway in Klebsiella pneumoniae.
    Xie M; Lu X; Zong H; Zhuge B
    FEMS Microbiol Lett; 2020 Sep; 367(18):. PubMed ID: 32901814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.