BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26465925)

  • 1. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo.
    Stalmans S; Bracke N; Wynendaele E; Gevaert B; Peremans K; Burvenich C; Polis I; De Spiegeleer B
    PLoS One; 2015; 10(10):e0139652. PubMed ID: 26465925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The improved blood-brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages.
    Liu H; Zhang W; Ma L; Fan L; Gao F; Ni J; Wang R
    Int J Pharm; 2014 Dec; 476(1-2):1-8. PubMed ID: 25245547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood-brain barrier transport kinetics of the neuromedin peptides NMU, NMN, NMB and NT.
    Gevaert B; Wynendaele E; Stalmans S; Bracke N; D'Hondt M; Smolders I; van Eeckhaut A; De Spiegeleer B
    Neuropharmacology; 2016 Aug; 107():460-470. PubMed ID: 27040796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood-brain barrier: meaningful controls.
    Kastin AJ; Akerstrom V; Pan W
    Peptides; 2001 Dec; 22(12):2127-36. PubMed ID: 11786200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pharmacokinetics of cell-penetrating peptides.
    Sarko D; Beijer B; Garcia Boy R; Nothelfer EM; Leotta K; Eisenhut M; Altmann A; Haberkorn U; Mier W
    Mol Pharm; 2010 Dec; 7(6):2224-31. PubMed ID: 20845937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mahogany (1377-1428) enters brain by a saturable transport system.
    Kastin AJ; Akerstrom V
    J Pharmacol Exp Ther; 2000 Aug; 294(2):633-6. PubMed ID: 10900242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular uptake of cell-penetrating peptides pVEC and transportan in plants.
    Chugh A; Eudes F
    J Pept Sci; 2008 Apr; 14(4):477-81. PubMed ID: 17985395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pVEC hydrophobic N-terminus is critical for antibacterial activity.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Pept Sci; 2018 Jun; 24(6):e3083. PubMed ID: 29737576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model.
    Frøslev P; Franzyk H; Ozgür B; Brodin B; Kristensen M
    Eur J Pharm Sci; 2022 Jan; 168():106054. PubMed ID: 34728364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of cell penetrating peptides on Chlamydomonas reinhardtii.
    Suresh A; Kim YC
    Biotechnol Bioeng; 2013 Oct; 110(10):2795-801. PubMed ID: 23612985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity.
    Herbig ME; Assi F; Textor M; Merkle HP
    Biochemistry; 2006 Mar; 45(11):3598-609. PubMed ID: 16533042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenomethionine as alternative label to the fluorophore TAMRA when exploiting cell-penetrating peptides as blood-brain barrier shuttles to better mimic the physicochemical properties of the non-labelled peptides.
    Þorgeirsdóttir DÝ; Andersen JH; Perch-Nielsen M; Møller LH; Grønbæk-Thorsen F; Kolberg HG; Gammelgaard B; Kristensen M
    Eur J Pharm Sci; 2023 Apr; 183():106400. PubMed ID: 36750148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of IGF-1 with the blood-brain barrier in vivo and in situ.
    Pan W; Kastin AJ
    Neuroendocrinology; 2000 Sep; 72(3):171-8. PubMed ID: 11025411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    J Pharmacol Exp Ther; 2020 Sep; 374(3):354-365. PubMed ID: 32561686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP.
    Eggimann GA; Buschor S; Darbre T; Reymond JL
    Org Biomol Chem; 2013 Oct; 11(39):6717-33. PubMed ID: 23933745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional variations in the transport of interleukin-1alpha across the blood-brain barrier in ICR and aging SAMP8 mice.
    Moinuddin A; Morley JE; Banks WA
    Neuroimmunomodulation; 2000; 8(4):165-70. PubMed ID: 11251390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical characterization and comparison of the blood-brain barrier permeability of eight opioid peptides.
    Van Dorpe S; Adriaens A; Polis I; Peremans K; Van Bocxlaer J; De Spiegeleer B
    Peptides; 2010 Jul; 31(7):1390-9. PubMed ID: 20347901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood-brain barrier permeability of novel [D-arg2]dermorphin (1-4) analogs: transport property is related to the slow onset of antinociceptive activity in the central nervous system.
    Deguchi Y; Naito Y; Ohtsuki S; Miyakawa Y; Morimoto K; Hosoya K; Sakurada S; Terasaki T
    J Pharmacol Exp Ther; 2004 Jul; 310(1):177-84. PubMed ID: 15031301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.