These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26465926)

  • 1. Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants.
    Statton J; Gustin-Craig S; Dixon KW; Kendrick GA
    PLoS One; 2015; 10(10):e0137778. PubMed ID: 26465926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities.
    Bell SY; Fraser MW; Statton J; Kendrick GA
    PLoS One; 2019; 14(3):e0214308. PubMed ID: 30897150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seagrass on the brink: Decline of threatened seagrass Posidonia australis continues following protection.
    Evans SM; Griffin KJ; Blick RAJ; Poore AGB; Vergés A
    PLoS One; 2018; 13(4):e0190370. PubMed ID: 29624579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population.
    D'Souza E; Patankar V; Arthur R; Marbà N; Alcoverro T
    PLoS One; 2015; 10(10):e0141224. PubMed ID: 26492558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving factors of biogeographical variation in seagrass herbivory.
    Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F
    Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote influence of off-shore fish farm waste on Mediterranean seagrass (Posidonia oceanica) meadows.
    Ruiz JM; Marco-Méndez C; Sánchez-Lizaso JL
    Mar Environ Res; 2010 Apr; 69(3):118-26. PubMed ID: 19846214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearshore seascape connectivity enhances seagrass meadow nursery function.
    Olson AM; Hessing-Lewis M; Haggarty D; Juanes F
    Ecol Appl; 2019 Jul; 29(5):e01897. PubMed ID: 31125160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating vegetative transplant success in Posidonia australis: a field trial with habitat enhancement.
    Campbell ML; Paling EI
    Mar Pollut Bull; 2003 Jul; 46(7):828-34. PubMed ID: 12837301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seagrass recovery after fish farm relocation in the eastern Mediterranean.
    Kletou D; Kleitou P; Savva I; Attrill MJ; Antoniou C; Hall-Spencer JM
    Mar Environ Res; 2018 Sep; 140():221-233. PubMed ID: 30251646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seagrass blue carbon spatial patterns at the meadow-scale.
    Oreska MPJ; McGlathery KJ; Porter JH
    PLoS One; 2017; 12(4):e0176630. PubMed ID: 28448617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of timing of grazing on plant and arthropod communities in high-elevation grasslands.
    Davis SC; Burkle LA; Cross WF; Cutting KA
    PLoS One; 2014; 9(10):e110460. PubMed ID: 25338008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna.
    Levey DJ; Caughlin TT; Brudvig LA; Haddad NM; Damschen EI; Tewksbury JJ; Evans DM
    Ecology; 2016 Sep; 97(9):2248-2258. PubMed ID: 27859066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular level responses to chronic versus pulse nutrient loading in the seagrass Posidonia oceanica undergoing herbivore pressure.
    Ruocco M; Marín-Guirao L; Ravaglioli C; Bulleri F; Procaccini G
    Oecologia; 2018 Sep; 188(1):23-39. PubMed ID: 29845353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green turtles shape the seascape through grazing patch formation around habitat features: Experimental evidence.
    Smulders FOH; Bakker ES; O'Shea OR; Campbell JE; Rhoades OK; Christianen MJA
    Ecology; 2023 Feb; 104(2):e3902. PubMed ID: 36310424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.
    Ravaglioli C; Capocchi A; Fontanini D; Mori G; Nuccio C; Bulleri F
    Mar Environ Res; 2018 May; 136():54-61. PubMed ID: 29519535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cattle grazing and conservation of a meadow-dependent amphibian species in the Sierra Nevada.
    Roche LM; Latimer AM; Eastburn DJ; Tate KW
    PLoS One; 2012; 7(4):e35734. PubMed ID: 22558211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green turtle (Chelonia mydas) grazing plot formation creates structural changes in a multi-species Great Barrier Reef seagrass meadow.
    Scott AL; York PH; Rasheed MA
    Mar Environ Res; 2020 Dec; 162():105183. PubMed ID: 33065522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acceptability of meadow plants to the slug Deroceras reticulatum and implications for grassland restoration.
    Barlow SE; Close AJ; Port GR
    Ann Bot; 2013 Aug; 112(4):721-30. PubMed ID: 23632124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patch age alters seagrass response mechanisms to herbivory damage.
    Jiménez-Ramos R; Egea LG; Pérez-Estrada CJ; Balart EF; Vergara JJ; Brun FG
    Mar Environ Res; 2024 May; 197():106443. PubMed ID: 38507985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.