BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 2646596)

  • 1. Abortive initiation by bacteriophage T3 and T7 RNA polymerases under conditions of limiting substrate.
    Ling ML; Risman SS; Klement JF; McGraw N; McAllister WT
    Nucleic Acids Res; 1989 Feb; 17(4):1605-18. PubMed ID: 2646596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression.
    Maher LJ
    Biochemistry; 1992 Aug; 31(33):7587-94. PubMed ID: 1510945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Escherichia coli RNA polymerase tight-binding site on T7 DNA is a weak promoter subject to substrate inhibition.
    Prosen DE; Cech CL
    Biochemistry; 1986 Sep; 25(19):5378-87. PubMed ID: 3535875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site.
    Klement JF; Moorefield MB; Jorgensen E; Brown JE; Risman S; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):21-9. PubMed ID: 2204706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription from bacteriophage T7 and SP6 RNA polymerase promoters in the presence of 3'-deoxyribonucleoside 5'-triphosphate chain terminators.
    Axelrod VD; Kramer FR
    Biochemistry; 1985 Oct; 24(21):5716-23. PubMed ID: 3002422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters.
    Hsu LM; Vo NV; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimal mechanism for abortive initiation of transcription of T7 DNA.
    Smagowicz W; Scheit KH
    Nucleic Acids Res; 1981 Nov; 9(21):5845-54. PubMed ID: 7031607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity.
    Joho KE; Gross LB; McGraw NJ; Raskin C; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):31-9. PubMed ID: 2204707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific contacts between the bacteriophage T3, T7, and SP6 RNA polymerases and their promoters.
    Jorgensen ED; Durbin RK; Risman SS; McAllister WT
    J Biol Chem; 1991 Jan; 266(1):645-51. PubMed ID: 1985921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential inhibition of abortive transcription initiation at different promoters catalysed by E. coli RNA polymerase. Effect of rifampicin on purine or pyramidine-initiated phosphodiester synthesis.
    Kumar KP; Chatterji D
    FEBS Lett; 1992 Jul; 306(1):46-50. PubMed ID: 1628742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and expression of the bacteriophage T3 RNA polymerase gene.
    Morris CE; Klement JF; McAllister WT
    Gene; 1986; 41(2-3):193-200. PubMed ID: 3011596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between promoter structure and template specificities exhibited by the bacteriophage T3 and T7 RNA polymerases.
    Bailey JN; Klement JF; McAllister WT
    Proc Natl Acad Sci U S A; 1983 May; 80(10):2814-8. PubMed ID: 6574450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of small RNAs using T7 RNA polymerase.
    Milligan JF; Uhlenbeck OC
    Methods Enzymol; 1989; 180():51-62. PubMed ID: 2482430
    [No Abstract]   [Full Text] [Related]  

  • 15. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes.
    Vo NV; Hsu LM; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3787-97. PubMed ID: 12667070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of coliphage T3 and T7 RNA polymerases by the lac repressor-operator system.
    Giordano TJ; Deuschle U; Bujard H; McAllister WT
    Gene; 1989 Dec; 84(2):209-19. PubMed ID: 2693210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro.
    Hsu LM; Vo NV; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11588-92. PubMed ID: 8524809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA folding during transcription by T7 RNA polymerase analyzed using the self-cleaving transcript assay.
    Tyagarajan K; Monforte JA; Hearst JE
    Biochemistry; 1991 Nov; 30(45):10920-4. PubMed ID: 1932016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [RNA polymerase of a rifampicin-resistant mutant of Escherichia coli has an altered selectivity to phage T7 DNA promoters].
    Ozolin' ON; Uteshev TA; Kamzolova SG
    Mol Biol (Mosk); 1988; 22(2):384-92. PubMed ID: 3292894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of specific contacts in T3 RNA polymerase-promoter interactions: kinetic analysis using small synthetic promoters.
    Schick C; Martin CT
    Biochemistry; 1993 Apr; 32(16):4275-80. PubMed ID: 8476856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.