These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26466086)

  • 1. Nanoplasmonic ruler to measure lipid vesicle deformation.
    Jackman JA; Špačková B; Linardy E; Kim MC; Yoon BK; Homola J; Cho NJ
    Chem Commun (Camb); 2016 Jan; 52(1):76-9. PubMed ID: 26466086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of phospholipid vesicles with smooth metal-oxide surfaces.
    Csúcs G; Ramsden JJ
    Biochim Biophys Acta; 1998 Feb; 1369(1):61-70. PubMed ID: 9556348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of supported membranes from vesicles.
    Keller CA; Glasmästar K; Zhdanov VP; Kasemo B
    Phys Rev Lett; 2000 Jun; 84(23):5443-6. PubMed ID: 10990964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of nanotopography on phospholipid bilayer formation on silicon dioxide.
    Pfeiffer I; Seantier B; Petronis S; Sutherland D; Kasemo B; Zäch M
    J Phys Chem B; 2008 Apr; 112(16):5175-81. PubMed ID: 18370429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-driven assembly of various supported lipid platforms: a comparative study on silicon oxide and titanium oxide.
    Cho NJ; Jackman JA; Liu M; Frank CW
    Langmuir; 2011 Apr; 27(7):3739-48. PubMed ID: 21366275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AH peptide-mediated formation of charged planar lipid bilayers.
    Zan GH; Jackman JA; Cho NJ
    J Phys Chem B; 2014 Apr; 118(13):3616-21. PubMed ID: 24628664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation.
    Jackman JA; Zhdanov VP; Cho NJ
    Langmuir; 2014 Aug; 30(31):9494-503. PubMed ID: 25035920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles.
    Dacic M; Jackman JA; Yorulmaz S; Zhdanov VP; Kasemo B; Cho NJ
    Langmuir; 2016 Jun; 32(25):6486-95. PubMed ID: 27182843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a planar zwitterionic lipid bilayer on titanium oxide.
    Cho NJ; Frank CW
    Langmuir; 2010 Oct; 26(20):15706-10. PubMed ID: 20857902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces.
    Pfeiffer I; Petronis S; Köper I; Kasemo B; Zäch M
    J Phys Chem B; 2010 Apr; 114(13):4623-31. PubMed ID: 20232804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces.
    Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J
    Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking Photosynthesis with Electrode-Supported Lipid Nanoassemblies.
    Wang M; Zhan W
    Acc Chem Res; 2016 Nov; 49(11):2551-2559. PubMed ID: 27759390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous diffusion in supported lipid bilayers induced by oxide surface nanostructures.
    Tero R; Sazaki G; Ujihara T; Urisu T
    Langmuir; 2011 Aug; 27(16):9662-5. PubMed ID: 21761843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale departures: excess lipid leaving the surface during supported lipid bilayer formation.
    Zhu L; Gregurec D; Reviakine I
    Langmuir; 2013 Dec; 29(49):15283-92. PubMed ID: 24266399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of osmotic pressure on adhesion of lipid vesicles to solid supports.
    Jackman JA; Choi JH; Zhdanov VP; Cho NJ
    Langmuir; 2013 Sep; 29(36):11375-84. PubMed ID: 23901837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of temperature dependence of the formation of a supported lipid bilayer via vesicle adsorption.
    Dimitrievski K; Reimhult E; Kasemo B; Zhdanov VP
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):77-86. PubMed ID: 15542344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported lipid bilayers with controlled curvature via colloidal lithography.
    Sundh M; Manandhar M; Svedhem S; Sutherland DS
    IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable occurrence of free-standing lipid membranes on nanograting structured supports.
    Peng PY; Chiang PC; Chao L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12261-9. PubMed ID: 24988277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicle adsorption on mesoporous silica and titania.
    Claesson M; Cho NJ; Frank CW; Andersson M
    Langmuir; 2010 Nov; 26(22):16630-3. PubMed ID: 20932045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.