These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26466248)

  • 1. Broad-bandwidth, high-efficiency multiwavelength conversion in a high-Q photonic crystal resonator.
    Wu JF; Li C
    Opt Lett; 2014 Sep; 39(18):5271-3. PubMed ID: 26466248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions.
    Wang B; Wu JF; Li C; Li ZY
    Opt Lett; 2018 Aug; 43(16):3945-3948. PubMed ID: 30106923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities.
    Chew X; Zhou G; Chau FS; Deng J; Tang X; Loke YC
    Opt Lett; 2010 Aug; 35(15):2517-9. PubMed ID: 20680043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity.
    Tanabe T; Kuramochi E; Taniyama H; Notomi M
    Opt Lett; 2010 Dec; 35(23):3895-7. PubMed ID: 21124557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities.
    Chakravarty S; Bhattacharya P; Chakrabarti S; Mi Z
    Opt Lett; 2007 May; 32(10):1296-8. PubMed ID: 17440566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking.
    Chen CH; Takeda K; Shinya A; Nozaki K; Sato T; Kawaguchi Y; Notomi M; Matsuo S
    Opt Express; 2011 Aug; 19(18):17669-76. PubMed ID: 21935134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation contrast optimization for wavelength conversion of a 20  Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity.
    Lengle K; Nguyen TN; Gay M; Bramerie L; Simon JC; Bazin A; Raineri F; Raj R
    Opt Lett; 2014 Apr; 39(8):2298-301. PubMed ID: 24978977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators.
    Alipour P; Eftekhar AA; Atabaki AH; Li Q; Yegnanarayanan S; Madsen CK; Adibi A
    Opt Express; 2011 Aug; 19(17):15899-907. PubMed ID: 21934953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure.
    Nozaki K; Matsuo S; Takeda K; Sato T; Kuramochi E; Notomi M
    Opt Express; 2013 Aug; 21(16):19022-8. PubMed ID: 23938817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.
    Rokhsari H; Vahala KJ
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):253905. PubMed ID: 15245009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocavity-based self-frequency conversion laser.
    Ota Y; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2013 Aug; 21(17):19778-89. PubMed ID: 24105526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre.
    Beaudou B; Couny F; Wang YY; Light PS; Wheeler NV; Gérôme F; Benabid F
    Opt Express; 2010 Jun; 18(12):12381-90. PubMed ID: 20588364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning.
    Tanabe T; Notomi M; Taniyama H; Kuramochi E
    Phys Rev Lett; 2009 Jan; 102(4):043907. PubMed ID: 19257423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstration of analog signal transmission in a silicon photonic crystal L3 resonator.
    Gui C; Zhang Y; Du J; Xia J; Wang J
    Opt Express; 2015 Jun; 23(11):13916-23. PubMed ID: 26072761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high-speed wavelength conversion in a silicon photonic chip.
    Hu H; Ji H; Galili M; Pu M; Peucheret C; Christian H Mulvad H; Yvind K; Hvam JM; Jeppesen P; Oxenløwe LK
    Opt Express; 2011 Oct; 19(21):19886-94. PubMed ID: 21996996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.