BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26466380)

  • 41. Nature's Swiss Army knives: ovipositor structure mirrors ecology in a multitrophic fig wasp community.
    Ghara M; Kundanati L; Borges RM
    PLoS One; 2011; 6(8):e23642. PubMed ID: 21909352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of host size on the clutch size and developmental success of the gregarious ectoparasitoid Eulophus pennicornis (Nees) (Hymenoptera: Eulophidae) [corrected] attacking larvae of the tomato moth Lacanobia oleracea (L.) (Lepidoptera: Noctuidae).
    Bell HA; Marris GC; Prickett AJ; Edwards JP
    J Exp Biol; 2005 Aug; 208(Pt 16):3199-209. PubMed ID: 16081616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Why is there no interspecific host discrimination in the two coexisting larval parasitoids of Drosophila species; Lepyopilina heterotoma (Thomson) and Asobara tabida (Nees).
    Turlings TC; van Batenburg FD; van Strien-van Liempt WT
    Oecologia; 1985 Oct; 67(3):352-359. PubMed ID: 28311568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Venom components of Asobara japonica impair cellular immune responses of host Drosophila melanogaster.
    Furihata SX; Matsumoto H; Kimura MT; Hayakawa Y
    Arch Insect Biochem Physiol; 2013 Jun; 83(2):86-100. PubMed ID: 23606512
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulating effects of the insecticide chlorpyrifos on host searching and infestation efficacy of a parasitoid wasp.
    Rafalimanana H; Kaiser L; Delpuech JM
    Pest Manag Sci; 2002 Apr; 58(4):321-8. PubMed ID: 11975179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The ectoparasitic wasp Eulophus pennicornis (Hymenoptera: Eulophidae) uses instar-specific endocrine disruption strategies to suppress the development of its host Lacanobia oleracea (Lepidoptera: Noctuidae).
    Edwards JP; Bell HA; Audsley N; Marris GC; Kirkbride-Smith A; Bryning G; Frisco C; Cusson M
    J Insect Physiol; 2006; 52(11-12):1153-62. PubMed ID: 17064726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Host-parasitoid interaction as affected by interkingdom competition.
    Rohlfs M
    Oecologia; 2008 Feb; 155(1):161-8. PubMed ID: 17989998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cockroach Oothecal Parasitoid, Evania appendigaster (Hymenoptera: Evaniidae) Exhibits Oviposition Preference Towards Oothecal Age Most Vulnerable to Host Cannibalism.
    Tee HS; Lee CY
    J Econ Entomol; 2017 Dec; 110(6):2504-2511. PubMed ID: 29029091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development.
    Kaeslin M; Pfister-Wilhelm R; Lanzrein B
    J Insect Physiol; 2005 Dec; 51(12):1330-9. PubMed ID: 16203013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma.
    Xie J; Vilchez I; Mateos M
    PLoS One; 2010 Aug; 5(8):e12149. PubMed ID: 20730104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modifications of the chemical profile of hosts after parasitism allow parasitoid females to assess the time elapsed since the first attack.
    Lebreton S; Christidès JP; Bagnères AG; Chevrier C; Darrouzet E
    J Chem Ecol; 2010 May; 36(5):513-21. PubMed ID: 20383797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid.
    Nakamatsu Y; Kuriya K; Harvey JA; Tanaka T
    J Insect Physiol; 2006; 52(11-12):1105-12. PubMed ID: 17095007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cotesia ruficrus (Hymenoptera: Braconidae) Parasitizing Cnaphalocrocis medinalis (Lepidoptera: Pyralidae): Developmental Interactions and Food Utilization Efficiency of Hosts.
    Chen Y; Liu XG; Wang J; Zhao J; Lu ZX; Liu YH
    J Econ Entomol; 2016 Apr; 109(2):588-93. PubMed ID: 26791819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Host-parasite interactions between whiteflies and their parasitoids.
    Gelman DB; Gerling D; Blackburn MB; Hu JS
    Arch Insect Biochem Physiol; 2005 Dec; 60(4):209-22. PubMed ID: 16304614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological suppression of the larval parasitoid Glyptapanteles pallipes by the polyembryonic parasitoid Copidosoma floridanum.
    Uka D; Hiraoka T; Iwabuchi K
    J Insect Physiol; 2006; 52(11-12):1137-42. PubMed ID: 17070833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variation of Leptopilina boulardi success in Drosophila hosts: what is inside the black box?
    Dubuffet A; Colinet D; Anselme C; Dupas S; Carton Y; Poirié M
    Adv Parasitol; 2009; 70():147-88. PubMed ID: 19773070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strategies of avoidance of host immune defenses in Asobara species.
    Prévost G; Doury G; Mabiala-Moundoungou AD; Cherqui A; Eslin P
    Adv Parasitol; 2009; 70():235-55. PubMed ID: 19773073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stereoselective chemical defense in the Drosophila parasitoid Leptopilina heterotoma is mediated by (-)-iridomyrmecin and (+)-isoiridomyrmecin.
    Stökl J; Hofferberth J; Pritschet M; Brummer M; Ruther J
    J Chem Ecol; 2012 Apr; 38(4):331-9. PubMed ID: 22477024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of host resistance and parasitoid counter-resistance.
    Kraaijeveld AR; Godfray HC
    Adv Parasitol; 2009; 70():257-80. PubMed ID: 19773074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parasitoid-induced cellular immune deficiency in Drosophila.
    Rizki TM; Rizki RM
    Ann N Y Acad Sci; 1994 Apr; 712():178-94. PubMed ID: 7910721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.