These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26466538)

  • 41. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation.
    Mayer F; Piel FB; Cassel-Lundhagen A; Kirichenko N; Grumiau L; Økland B; Bertheau C; Grégoire JC; Mardulyn P
    Mol Ecol; 2015 Mar; 24(6):1292-310. PubMed ID: 25655781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficacy of two systemic insecticides injected into loblolly pine for protection against southern pine bark beetles (Coleoptera: Curculionidae).
    Grosman DM; Clarke SR; Upton WW
    J Econ Entomol; 2009 Jun; 102(3):1062-9. PubMed ID: 19610420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing.
    Andrus RA; Hart SJ; Veblen TT
    Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.
    Harvey BJ; Donato DC; Turner MG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors.
    Byers JA; Zhang QH; Birgersson G
    Naturwissenschaften; 2004 May; 91(5):215-9. PubMed ID: 15146267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Response of some scolytids and their predators to ethanol and 4-allylanisole in pine forests of central Oregon.
    Joseph G; Kelsey RG; Peck RW; Niwa CG
    J Chem Ecol; 2001 Apr; 27(4):697-715. PubMed ID: 11446294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.
    Fettig CJ; Munson AS; McKelvey SR; Bush PB; Borys RR
    J Environ Qual; 2008; 37(3):1170-9. PubMed ID: 18453436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
    Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N
    Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.
    Keefover-Ring K; Trowbridge A; Mason CJ; Raffa KF
    J Chem Ecol; 2016 Jan; 42(1):1-12. PubMed ID: 26662358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model Analysis of Spatial Patterns in Mountain Pine Beetle Outbreaks.
    Logan JA; White P; Bentz BJ; Powell JA
    Theor Popul Biol; 1998 Jun; 53(3):236-55. PubMed ID: 9682026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diversity and Species Composition of Bark and Ambrosia Beetles Captured Using Ethanol Baited Traps on Different Hosts in East Java, Indonesia.
    Tarno H; Setiawan Y; Kusuma CB; Fitriyah M; Hudan AN; Yawandika AP; Nasution HA; Saragih R; Bagasta APY; Wang Z; Wang J
    Zool Stud; 2021; 60():e55. PubMed ID: 35665082
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ophiostomatoid fungi associated with mites phoretic on bark beetles in Qinghai, China.
    Chang R; Duong TA; Taerum SJ; Wingfield MJ; Zhou X; de Beer ZW
    IMA Fungus; 2020; 11():15. PubMed ID: 32775175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.
    Hayes CJ; DeGomez TE; Clancy KM; Williams KK; McMillin JD; Anhold JA
    J Econ Entomol; 2008 Aug; 101(4):1253-65. PubMed ID: 18767735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drought-Mediated Changes in Tree Physiological Processes Weaken Tree Defenses to Bark Beetle Attack.
    Kolb T; Keefover-Ring K; Burr SJ; Hofstetter R; Gaylord M; Raffa KF
    J Chem Ecol; 2019 Oct; 45(10):888-900. PubMed ID: 31493165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles.
    Jacobs K; Bergdahl DR; Wingfield MJ; Halik S; Seifert KA; Bright DE; Wingfield BD
    Mycol Res; 2004 Apr; 108(Pt 4):411-8. PubMed ID: 15209281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IS SPECIALIZATION A DEAD END? THE PHYLOGENY OF HOST USE IN DENDROCTONUS BARK BEETLES (SCOLYTIDAE).
    Kelley ST; Farrell BD
    Evolution; 1998 Dec; 52(6):1731-1743. PubMed ID: 28565330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles.
    Dohet L; Grégoire JC; Berasategui A; Kaltenpoth M; Biedermann PH
    FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27387908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources.
    Liu Y; Anastacio GR; Ishangulyyeva G; Rodriguez-Ramos JC; Erbilgin N
    Microb Ecol; 2021 May; 81(4):1106-1110. PubMed ID: 33404818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Few generalizable patterns of tree-level mortality during extreme drought and concurrent bark beetle outbreaks.
    Reed CC; Hood SM
    Sci Total Environ; 2021 Jan; 750():141306. PubMed ID: 32846245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ancestral state reconstruction for Dendroctonus bark beetles: evolution of a tree killer.
    Reeve JD; Anderson FE; Kelley ST
    Environ Entomol; 2012 Jun; 41(3):723-30. PubMed ID: 22732632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.