These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 26466596)

  • 1. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.
    Chen R; Dou J
    Biotechnol Lett; 2016 Feb; 38(2):213-21. PubMed ID: 26466596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Metabolic engineering for the efficient co-utilization of glucose and xylose].
    Wang Q; Gao J; Zhou Y
    Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2710-2730. PubMed ID: 39174478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].
    Liu W; Fu J; Zhang B; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1161-72. PubMed ID: 24364352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic biology for microbial production of lipid-based biofuels.
    d'Espaux L; Mendez-Perez D; Li R; Keasling JD
    Curr Opin Chem Biol; 2015 Dec; 29():58-65. PubMed ID: 26479184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butanol production from lignocellulosics.
    Jurgens G; Survase S; Berezina O; Sklavounos E; Linnekoski J; Kurkijärvi A; Väkevä M; van Heiningen A; Granström T
    Biotechnol Lett; 2012 Aug; 34(8):1415-34. PubMed ID: 22526420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Biology for Specialty Chemicals.
    Markham KA; Alper HS
    Annu Rev Chem Biomol Eng; 2015; 6():35-52. PubMed ID: 26083056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances of consolidated bioprocessing based on recombinant strategy].
    Zheng Z; Zhao M; Chen T; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1354-62. PubMed ID: 24432651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.
    Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY
    Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.
    Sardi M; Gasch AP
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28637316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.
    Mans R; Daran JG; Pronk JT
    Curr Opin Biotechnol; 2018 Apr; 50():47-56. PubMed ID: 29156423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of microbial cell factories for synthesizing value-added chemicals with xylose].
    Wang T; Lu L; Shen X; Sun X; Wang J; Yuan Q
    Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2695-2709. PubMed ID: 39174477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization.
    Chandel AK; Garlapati VK; Singh AK; Antunes FAF; da Silva SS
    Bioresour Technol; 2018 Sep; 264():370-381. PubMed ID: 29960825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.
    Yuan Y; Zhao H
    Biotechnol Bioeng; 2013 Nov; 110(11):2874-81. PubMed ID: 23616289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.
    Ko JK; Lee SM
    Curr Opin Biotechnol; 2018 Apr; 50():72-80. PubMed ID: 29195120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.