These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26467177)

  • 1. High-level iron mitigates fusaricidin-induced membrane damage and reduces membrane fluidity leading to enhanced drug resistance in Bacillus subtilis.
    Yu WB; Ye BC
    J Basic Microbiol; 2016 May; 56(5):502-9. PubMed ID: 26467177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the mechanism of action of fusaricidin on Bacillus subtilis.
    Yu WB; Yin CY; Zhou Y; Ye BC
    PLoS One; 2012; 7(11):e50003. PubMed ID: 23185515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity.
    Kajimura Y; Kaneda M
    J Antibiot (Tokyo); 1997 Mar; 50(3):220-8. PubMed ID: 9127193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis.
    Scheinpflug K; Wenzel M; Krylova O; Bandow JE; Dathe M; Strahl H
    Sci Rep; 2017 Mar; 7():44332. PubMed ID: 28276520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cell membrane properties and phospholipid fatty acids of bacillus subtilis induced by polyphenolic extract of Sanguisorba officinalis L.
    Zhu HL; Chen G; Chen SN; Wang RQ; Chen L; Xue H; Jian SP
    J Food Sci; 2020 Jul; 85(7):2164-2170. PubMed ID: 32572963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.
    Uttlová P; Pinkas D; Bechyňková O; Fišer R; Svobodová J; Seydlová G
    Biochim Biophys Acta; 2016 Dec; 1858(12):2965-2971. PubMed ID: 27620333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.
    Liu J; Hagberg I; Novitsky L; Hadj-Moussa H; Avis TJ
    Fungal Biol; 2014 Nov; 118(11):855-61. PubMed ID: 25442289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New antifungal antibiotics, bacillopeptins and fusaricidins].
    Kaneda M; Kajimura Y
    Yakugaku Zasshi; 2002 Sep; 122(9):651-71. PubMed ID: 12235857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis.
    Sandrin C; Peypoux F; Michel G
    Biotechnol Appl Biochem; 1990 Aug; 12(4):370-5. PubMed ID: 2119191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae.
    Besson F; Peypoux F; Quentin MJ; Michel G
    J Antibiot (Tokyo); 1984 Feb; 37(2):172-7. PubMed ID: 6423598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis.
    Thimon L; Peypoux F; Maget-Dana R; Roux B; Michel G
    Biotechnol Appl Biochem; 1992 Oct; 16(2):144-51. PubMed ID: 1457050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity.
    Kajimura Y; Kaneda M
    J Antibiot (Tokyo); 1996 Feb; 49(2):129-35. PubMed ID: 8621351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mode of action of ASK-753 on Bacillus subtilis.
    Shimi IR; Shoukry S
    J Antibiot (Tokyo); 1976 Mar; 29(3):303-8. PubMed ID: 816765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Purification and characterization of antifungal peptide LP-1].
    Liu Y; Xu Q; Chen Z
    Wei Sheng Wu Xue Bao; 1999 Oct; 39(5):441-7. PubMed ID: 12555526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin.
    Wu G; Wu H; Li L; Fan X; Ding J; Li X; Xi T; Shen Z
    Biochem Biophys Res Commun; 2010 Apr; 395(1):31-5. PubMed ID: 20331979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples.
    Sabaté DC; Carrillo L; Audisio MC
    Res Microbiol; 2009 Apr; 160(3):193-9. PubMed ID: 19358885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle Leakage Reflects the Target Selectivity of Antimicrobial Lipopeptides from Bacillus subtilis.
    Fiedler S; Heerklotz H
    Biophys J; 2015 Nov; 109(10):2079-89. PubMed ID: 26588567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity.
    Kingston AW; Subramanian C; Rock CO; Helmann JD
    Mol Microbiol; 2011 Jul; 81(1):69-79. PubMed ID: 21542858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.
    Ulvatne H; Samuelsen Ø; Haukland HH; Krämer M; Vorland LH
    FEMS Microbiol Lett; 2004 Aug; 237(2):377-84. PubMed ID: 15321686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.