These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26467249)

  • 1. Studies on properties of the xylan‑binding domain and linker sequence of xylanase XynG1‑1 from Paenibacillus campinasensis G1‑1.
    Liu Y; Huang L; Li W; Guo W; Zheng H; Wang J; Lu F
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1591-9. PubMed ID: 26467249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel cellulose-binding domain within the endo-β-1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003.
    Kim DR; Lim HK; Lee KI; Hwang IT
    Enzyme Microb Technol; 2016 Nov; 93-94():166-173. PubMed ID: 27702477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1-1.
    Zheng H; Liu Y; Liu X; Wang J; Han Y; Lu F
    J Microbiol Biotechnol; 2012 Jul; 22(7):930-8. PubMed ID: 22580312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis.
    Zheng H; Liu Y; Sun M; Han Y; Wang J; Sun J; Lu F
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):153-62. PubMed ID: 24212471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a thermostable GH11 xylanase from Paenibacillus campinasensis NTU-11 and the distinct roles of its carbohydrate-binding domain and linker sequence.
    Wang L; Wang Y; Chang S; Gao Z; Ma J; Wu B; He B; Wei P
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112167. PubMed ID: 34715594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain.
    Fujimoto Z; Kuno A; Kaneko S; Yoshida S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2000 Jul; 300(3):575-85. PubMed ID: 10884353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of a Paenibacillus campinasensis xylanase in Bacillus megaterium and its applications to biobleaching of cotton stalk pulp and saccharification of recycled paper sludge.
    Zheng H; Liu Y; Liu X; Han Y; Wang J; Lu F
    Bioresour Technol; 2012 Dec; 125():182-7. PubMed ID: 23026332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain.
    Shi P; Tian J; Yuan T; Liu X; Huang H; Bai Y; Yang P; Chen X; Wu N; Yao B
    Appl Environ Microbiol; 2010 Jun; 76(11):3620-4. PubMed ID: 20382811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An β-1,4-xylanase with exo-enzyme activity produced by Paenibacillus xylanilyticus KJ-03 and its cloning and characterization.
    Park DJ; Lee YS; Chang J; Fang SJ; Choi YL
    J Microbiol Biotechnol; 2013 Mar; 23(3):397-404. PubMed ID: 23462014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T).
    Amel BD; Nawel B; Khelifa B; Mohammed G; Manon J; Salima KG; Farida N; Hocine H; Bernard O; Jean-Luc C; Marie-Laure F
    Carbohydr Res; 2016 Jan; 419():60-8. PubMed ID: 26687892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of binding activity of xylan-binding domain by amino acid substitution.
    Sakata T; Takakura J; Miyakubo H; Osada Y; Wada R; Takahashi H; Yatsunami R; Fukui T; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):253-4. PubMed ID: 17150913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima.
    Kleine J; Liebl W
    Extremophiles; 2006 Oct; 10(5):373-81. PubMed ID: 16550304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new bi-modular endo-β-1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003.
    Song HY; Lim HK; Kim DR; Lee KI; Hwang IT
    Enzyme Microb Technol; 2014 Jan; 54():1-7. PubMed ID: 24267560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obtaining cellulose binding and hydrolyzing activity of a family 11 hybrid xylanase by fusion with xylan binding domain.
    Liu MQ; Dai XJ; Liu GF; Wang Q
    Protein Expr Purif; 2013 Mar; 88(1):85-92. PubMed ID: 23246713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ¹H, ¹³C and ¹⁵N backbone and side-chain resonance assignments of a family 36 carbohydrate binding module of xylanase from Paenibacillus campinasensis.
    Wang YS; Ko CH; Chang HT; Yang KJ; Chen YJ; Huang SJ; Fang PJ; Chang CF; Tzou DL
    Biomol NMR Assign; 2014 Oct; 8(2):303-6. PubMed ID: 23835623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module.
    Fujimoto Z; Kuno A; Kaneko S; Kobayashi H; Kusakabe I; Mizuno H
    J Mol Biol; 2002 Feb; 316(1):65-78. PubMed ID: 11829503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904.
    Li Q; Sun B; Li X; Xiong K; Xu Y; Yang R; Hou J; Teng C
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1447-1455. PubMed ID: 29030195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24.
    Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY
    Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.