These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26467291)

  • 1. Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles.
    Jung H; Cha H; Lee D; Yoon S
    ACS Nano; 2015 Dec; 9(12):12292-300. PubMed ID: 26467291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon coupling between silver nanoparticles: Transition from the classical to the quantum regime.
    Cha H; Lee D; Yoon JH; Yoon S
    J Colloid Interface Sci; 2016 Feb; 464():18-24. PubMed ID: 26606377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H; Yoon JH; Yoon S
    ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-satellite-satellite hierarchical nanostructures: assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering.
    Trinh HD; Kim S; Park J; Yoon S
    Nanoscale; 2022 Nov; 14(45):17003-17012. PubMed ID: 36354377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon Coupling of Compositionally Heterogeneous Core-Satellite Nanoassemblies.
    Yoon JH; Zhou Y; Blaber MG; Schatz GC; Yoon S
    J Phys Chem Lett; 2013 May; 4(9):1371-8. PubMed ID: 26282287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations.
    Esteban R; Zugarramurdi A; Zhang P; Nordlander P; García-Vidal FJ; Borisov AG; Aizpurua J
    Faraday Discuss; 2015; 178():151-83. PubMed ID: 25739465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.
    Härtling T; Alaverdyan Y; Hille A; Wenzel MT; Käll M; Eng LM
    Opt Express; 2008 Aug; 16(16):12362-71. PubMed ID: 18679513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres.
    Jose J; Schumacher L; Jalali M; Haberfehlner G; Svejda JT; Erni D; Schlücker S
    ACS Nano; 2022 Dec; 16(12):21377-21387. PubMed ID: 36475629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond.
    Li Y; Deng Z
    Acc Chem Res; 2019 Dec; 52(12):3442-3454. PubMed ID: 31742388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement.
    Lu B; Vegso K; Micky S; Ritz C; Bodik M; Fedoryshyn YM; Siffalovic P; Stemmer A
    ACS Nano; 2023 Jul; 17(13):12774-12787. PubMed ID: 37354449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.