These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26467291)

  • 21. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles.
    Bachelier G; Russier-Antoine I; Benichou E; Jonin C; Del Fatti N; Vallée F; Brevet PF
    Phys Rev Lett; 2008 Nov; 101(19):197401. PubMed ID: 19113308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties.
    Byers CP; Zhang H; Swearer DF; Yorulmaz M; Hoener BS; Huang D; Hoggard A; Chang WS; Mulvaney P; Ringe E; Halas NJ; Nordlander P; Link S; Landes CF
    Sci Adv; 2015 Dec; 1(11):e1500988. PubMed ID: 26665175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrakis(4-sulfonatophenyl)porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances.
    Zhang L; Chen H; Wang J; Li YF; Wang J; Sang Y; Xiao SJ; Zhan L; Huang CZ
    Small; 2010 Sep; 6(18):2001-9. PubMed ID: 20715071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromagnetic fields around silver nanoparticles and dimers.
    Hao E; Schatz GC
    J Chem Phys; 2004 Jan; 120(1):357-66. PubMed ID: 15267296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate.
    Liu W; Shen Y; Xiao G; She X; Wang J; Jin C
    Nanotechnology; 2017 Jan; 28(7):075301. PubMed ID: 28074781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection.
    Yuan P; Ma R; Guan Z; Gao N; Xu QH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13149-56. PubMed ID: 24983536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions.
    Zhang C; Li D; Zhang G; Wang X; Mao L; Gan Q; Ding T; Xu H
    Sci Adv; 2022 Feb; 8(5):eabj9752. PubMed ID: 35119919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of field-analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection.
    Awang RA; El-Gohary SH; Kim NH; Byun KM
    Appl Opt; 2012 Nov; 51(31):7437-42. PubMed ID: 23128689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of plasmon coupling on curved interfaces.
    Ni Y; Kan C; Xu J; Liu Y; Xu H; Wang C
    Appl Opt; 2017 Oct; 56(29):8240-8245. PubMed ID: 29047689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual gold dimers investigated by far- and near-field imaging.
    Lereu AL; Sanchez-Mosteiro G; Ghenuche P; Quidant R; van Hulst NF
    J Microsc; 2008 Feb; 229(Pt 2):254-8. PubMed ID: 18304081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution.
    Readman C; de Nijs B; Szabó I; Demetriadou A; Greenhalgh R; Durkan C; Rosta E; Scherman OA; Baumberg JJ
    Nano Lett; 2019 Mar; 19(3):2051-2058. PubMed ID: 30726095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles.
    Ramos D; Malvar O; Davis ZJ; Tamayo J; Calleja M
    Nano Lett; 2018 Nov; 18(11):7165-7170. PubMed ID: 30339403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes.
    Lamothe E; Lévêque G; Martin OJ
    Opt Express; 2007 Jul; 15(15):9631-44. PubMed ID: 19547312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance.
    Park SJ; Kim YB; Moon YJ; Cho JW; Kim SK
    Opt Express; 2020 May; 28(10):15472-15481. PubMed ID: 32403574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A plasmon ruler based on nanoscale photothermal effect.
    Zhang W; Li Q; Qiu M
    Opt Express; 2013 Jan; 21(1):172-81. PubMed ID: 23388908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.