These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 26467450)
21. Characterization of the carotenoid-binding protein of the Y-gene dominant mutants of Bombyx mori. Tsuchida K; Jouni ZE; Gardetto J; Kobayashi Y; Tabunoki H; Azuma M; Sugiyama H; Takada N; Maekawa H; Banno Y; Fujii H; Iwano H; Wells MA J Insect Physiol; 2004 Apr; 50(4):363-72. PubMed ID: 15081829 [TBL] [Abstract][Full Text] [Related]
22. Biosynthesis of 8-hydroxyquinoline-2-carboxylic acid, an iron chelator from the gut of the lepidopteran Spodoptera littoralis. Pesek J; Svoboda J; Sattler M; Bartram S; Boland W Org Biomol Chem; 2015 Jan; 13(1):178-84. PubMed ID: 25356857 [TBL] [Abstract][Full Text] [Related]
23. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Glauser G; Marti G; Villard N; Doyen GA; Wolfender JL; Turlings TC; Erb M Plant J; 2011 Dec; 68(5):901-11. PubMed ID: 21838747 [TBL] [Abstract][Full Text] [Related]
24. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
25. Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. Ferreira AH; Cristofoletti PT; Lorenzini DM; Guerra LO; Paiva PB; Briones MR; Terra WR; Ferreira C J Insect Physiol; 2007 Nov; 53(11):1112-24. PubMed ID: 17644107 [TBL] [Abstract][Full Text] [Related]
26. Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae. Giner M; Avilla J; Balcells M; Caccia S; Smagghe G Arch Insect Biochem Physiol; 2012 Jan; 79(1):18-30. PubMed ID: 23589218 [TBL] [Abstract][Full Text] [Related]
27. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Ghumare SS; Mukherjee SN Indian J Exp Biol; 2003 Aug; 41(8):895-9. PubMed ID: 15248492 [TBL] [Abstract][Full Text] [Related]
28. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
29. Phospholipid biosynthesis in the gut of Spodoptera litura larvae and effects of tannic acid ingestion. Aboshi T; Yoshinaga N; Nishida R; Mori N Insect Biochem Mol Biol; 2010 Apr; 40(4):325-30. PubMed ID: 20184956 [TBL] [Abstract][Full Text] [Related]
30. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: a Bacillus thuringiensis Cry4Ba toxin receptor. Dechklar M; Tiewsiri K; Angsuthanasombat C; Pootanakit K Insect Biochem Mol Biol; 2011 Mar; 41(3):159-66. PubMed ID: 21146607 [TBL] [Abstract][Full Text] [Related]
31. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
33. Effect of ace inhibitors and TMOF on growth, development, and trypsin activity of larval Spodoptera littoralis. Lemeire E; Borovsky D; Van Camp J; Smagghe G Arch Insect Biochem Physiol; 2008 Dec; 69(4):199-208. PubMed ID: 18949805 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae. Caccia S; Van Damme EJ; De Vos WH; Smagghe G J Insect Physiol; 2012 Sep; 58(9):1177-83. PubMed ID: 22677323 [TBL] [Abstract][Full Text] [Related]
35. Protein profiles of the midgut of Spodoptera litura larvae at the sixth instar feeding stage by shotgun ESI-MS approach. Liu J; Zheng S; Liu L; Li L; Feng Q J Proteome Res; 2010 May; 9(5):2117-47. PubMed ID: 20345177 [TBL] [Abstract][Full Text] [Related]
36. Transcriptional response of BmToll9-1 and RNAi machinery genes to exogenous dsRNA in the midgut of Bombyx mori. Liu J; Smagghe G; Swevers L J Insect Physiol; 2013 Jun; 59(6):646-54. PubMed ID: 23602829 [TBL] [Abstract][Full Text] [Related]
37. Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Vilaplana L; Pascual N; Perera N; Bellés X Insect Biochem Mol Biol; 2007 Dec; 37(12):1241-8. PubMed ID: 17967343 [TBL] [Abstract][Full Text] [Related]
38. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
39. The effect of calorie restriction on growth and development in silkworm, Bombyx mori. Li Y; Chen K; Yao Q; Li J; Wang Y; Liu H; Zhang C; Huang G Arch Insect Biochem Physiol; 2009 Jul; 71(3):159-72. PubMed ID: 19479736 [TBL] [Abstract][Full Text] [Related]
40. Assessment of species specificity of moulting accelerating compounds in Lepidoptera: comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays. Soin T; De Geyter E; Mosallanejad H; Iga M; Martín D; Ozaki S; Kitsuda S; Harada T; Miyagawa H; Stefanou D; Kotzia G; Efrose R; Labropoulou V; Geelen D; Iatrou K; Nakagawa Y; Janssen CR; Smagghe G; Swevers L Pest Manag Sci; 2010 May; 66(5):526-35. PubMed ID: 20069627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]