BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26467480)

  • 21. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-function relationships of the polypyrimidine tract binding protein.
    Auweter SD; Allain FH
    Cell Mol Life Sci; 2008 Feb; 65(4):516-27. PubMed ID: 17975705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The domains of polypyrimidine tract binding protein have distinct RNA structural preferences.
    Clerte C; Hall KB
    Biochemistry; 2009 Mar; 48(10):2063-74. PubMed ID: 19226116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry.
    Mitchell SA; Spriggs KA; Bushell M; Evans JR; Stoneley M; Le Quesne JP; Spriggs RV; Willis AE
    Genes Dev; 2005 Jul; 19(13):1556-71. PubMed ID: 15998809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BMC Bioinformatics; 2022 Jun; 23(1):257. PubMed ID: 35768792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1.
    Pickering BM; Mitchell SA; Spriggs KA; Stoneley M; Willis AE
    Mol Cell Biol; 2004 Jun; 24(12):5595-605. PubMed ID: 15169918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis.
    Shan M; Ji X; Janssen K; Silverman IM; Humenik J; Garcia BA; Liebhaber SA; Gregory BD
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34315813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins.
    Zhao W; Zhang S; Zhu Y; Xi X; Bao P; Ma Z; Kapral TH; Chen S; Zagrovic B; Yang YT; Lu ZJ
    Nucleic Acids Res; 2022 Jan; 50(D1):D287-D294. PubMed ID: 34403477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks.
    Lin J; Zhang Y; Frankel WN; Ouyang Z
    PLoS Comput Biol; 2019 Aug; 15(8):e1007227. PubMed ID: 31425505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure.
    Li X; Quon G; Lipshitz HD; Morris Q
    RNA; 2010 Jun; 16(6):1096-107. PubMed ID: 20418358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep neural networks for interpreting RNA-binding protein target preferences.
    Ghanbari M; Ohler U
    Genome Res; 2020 Feb; 30(2):214-226. PubMed ID: 31992613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies.
    Medina-Munoz HC; Kofman E; Jagannatha P; Boyle EA; Yu T; Jones KL; Mueller JR; Lykins GD; Doudna AT; Park SS; Blue SM; Ranzau BL; Kohli RM; Komor AC; Yeo GW
    Nat Commun; 2024 Jan; 15(1):875. PubMed ID: 38287010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features.
    Pradhan UK; Meher PK; Naha S; Pal S; Gupta S; Gupta A; Parsad R
    Brief Funct Genomics; 2023 Nov; 22(5):401-410. PubMed ID: 37158175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.