BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 26467480)

  • 41. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures.
    Han T; Kim JK
    Methods Mol Biol; 2016; 1361():77-90. PubMed ID: 26483017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SSCRB: Predicting circRNA-RBP Interaction Sites Using a Sequence and Structural Feature-Based Attention Model.
    Liu L; Wei Y; Zhang Q; Zhao Q
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1762-1772. PubMed ID: 38224504
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inferring RNA-binding protein target preferences using adversarial domain adaptation.
    Liu Y; Li R; Luo J; Zhang Z
    PLoS Comput Biol; 2022 Feb; 18(2):e1009863. PubMed ID: 35202389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs.
    Bressin A; Schulte-Sasse R; Figini D; Urdaneta EC; Beckmann BM; Marsico A
    Nucleic Acids Res; 2019 May; 47(9):4406-4417. PubMed ID: 30923827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network.
    Zhang J; Chen Q; Liu B
    J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global profiling of RNA-binding protein target sites by LACE-seq.
    Su R; Fan LH; Cao C; Wang L; Du Z; Cai Z; Ouyang YC; Wang Y; Zhou Q; Wu L; Zhang N; Zhu X; Lei WL; Zhao H; Tian Y; He S; Wong CCL; Sun QY; Xue Y
    Nat Cell Biol; 2021 Jun; 23(6):664-675. PubMed ID: 34108658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr.
    Mitchell SA; Spriggs KA; Coldwell MJ; Jackson RJ; Willis AE
    Mol Cell; 2003 Mar; 11(3):757-71. PubMed ID: 12667457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins.
    Jarmoskaite I; Denny SK; Vaidyanathan PP; Becker WR; Andreasson JOL; Layton CJ; Kappel K; Shivashankar V; Sreenivasan R; Das R; Greenleaf WJ; Herschlag D
    Mol Cell; 2019 Jun; 74(5):966-981.e18. PubMed ID: 31078383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Predicting of The Sequence Specificities of RNA Binding Proteins by Deep Learning.
    Tayara H; Chong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2526-2534. PubMed ID: 32191896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PrismNet: predicting protein-RNA interaction using in vivo RNA structural information.
    Xu Y; Zhu J; Huang W; Xu K; Yang R; Zhang QC; Sun L
    Nucleic Acids Res; 2023 Jul; 51(W1):W468-W477. PubMed ID: 37140045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Learning for Elucidating Modifications to RNA-Status and Challenges Ahead.
    Rennie S
    Genes (Basel); 2024 May; 15(5):. PubMed ID: 38790258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures.
    Sun L; Xu K; Huang W; Yang YT; Li P; Tang L; Xiong T; Zhang QC
    Cell Res; 2021 May; 31(5):495-516. PubMed ID: 33623109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inferring RBP-Mediated Regulation in Lung Squamous Cell Carcinoma.
    Lafzi A; Kazan H
    PLoS One; 2016; 11(5):e0155354. PubMed ID: 27186987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model.
    Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.