These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 26467496)
1. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves. Hofmann F; Otto M; Kuhn U; Ober S; Schlechtriemen U; Vögel R Insects; 2011 Feb; 2(1):12-21. PubMed ID: 26467496 [TBL] [Abstract][Full Text] [Related]
2. Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling. Hofmann F; Kruse-Plass M; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W Environ Sci Eur; 2016; 28(1):14. PubMed ID: 27752448 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution of Aglais urticae (L.) and its host plant Urtica dioica (L.) in an agricultural landscape: implications for Bt maize risk assessment and post-market monitoring. Gathmann A; Wirooks L; Eckert J; Schuphan I Environ Biosafety Res; 2006; 5(1):27-36. PubMed ID: 16978572 [TBL] [Abstract][Full Text] [Related]
4. Response to Kruse-Plass et al. (2017) regarding the risk to non-target lepidopteran larvae exposed to pollen from one or more of three Bt maize events (MON810, Bt11 and 1507). Perry JN; Barberi P; Bartsch D; Birch ANE; Gathmann A; Kiss J; Manachini B; Nuti M; Rauschen S; Schiemann J; Schuppener M; Sweet J; Tebbe CC; Veronesi F Environ Sci Eur; 2017; 29(1):21. PubMed ID: 28546900 [TBL] [Abstract][Full Text] [Related]
5. Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507). Kruse-Plass M; Hofmann F; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W Environ Sci Eur; 2017; 29(1):12. PubMed ID: 28331779 [TBL] [Abstract][Full Text] [Related]
6. Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae). Felke M; Langenbruch GA; Feiertag S; Kassa A Environ Biosafety Res; 2010; 9(1):5-12. PubMed ID: 21122482 [TBL] [Abstract][Full Text] [Related]
7. Environmental risk assessment for the small tortoiseshell Aglais urticae and a stacked Bt-maize with combined resistances against Lepidoptera and Chrysomelidae in central European agrarian landscapes. Schuppener M; Mühlhause J; Müller AK; Rauschen S Mol Ecol; 2012 Sep; 21(18):4646-62. PubMed ID: 22861488 [TBL] [Abstract][Full Text] [Related]
8. Selection of relevant non-target herbivores for monitoring the environmental effects of Bt maize pollen. Schmitz G; Bartsch D; Pretscher P Environ Biosafety Res; 2003; 2(2):117-32. PubMed ID: 15612277 [TBL] [Abstract][Full Text] [Related]
9. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae). Lang A; Otto M Insects; 2015 Aug; 6(3):760-71. PubMed ID: 26463415 [TBL] [Abstract][Full Text] [Related]
10. Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Gathmann A; Wirooks L; Hothorn LA; Bartsch D; Schuphan I Mol Ecol; 2006 Aug; 15(9):2677-85. PubMed ID: 16842436 [TBL] [Abstract][Full Text] [Related]
11. Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure. Perry JN; Devos Y; Arpaia S; Bartsch D; Ehlert C; Gathmann A; Hails RS; Hendriksen NB; Kiss J; Messéan A; Mestdagh S; Neemann G; Nuti M; Sweet JB; Tebbe CC J Appl Ecol; 2012 Feb; 49(1):29-37. PubMed ID: 22496596 [TBL] [Abstract][Full Text] [Related]
12. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen. Peterson RK; Meyer SJ; Wolf AT; Wolt JD; Davis PM Risk Anal; 2006 Jun; 26(3):845-58. PubMed ID: 16834638 [TBL] [Abstract][Full Text] [Related]
13. Bt pollen dispersal and Bt kernel mosaics: integrity of non-Bt refugia for lepidopteran resistance management in maize. Burkness EC; Hutchison WD J Econ Entomol; 2012 Oct; 105(5):1773-80. PubMed ID: 23156176 [TBL] [Abstract][Full Text] [Related]
14. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Li Y; Liu Y; Yin X; Romeis J; Song X; Chen X; Geng L; Peng Y; Li Y Toxins (Basel); 2017 Mar; 9(3):. PubMed ID: 28300767 [No Abstract] [Full Text] [Related]
15. An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly. Wolt JD; Conlan CA; Majima K Environ Biosafety Res; 2005; 4(4):243-51. PubMed ID: 16827552 [TBL] [Abstract][Full Text] [Related]
16. Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Hansen Jesse LC; Obrycki JJ Oecologia; 2000 Oct; 125(2):241-248. PubMed ID: 24595835 [TBL] [Abstract][Full Text] [Related]
17. Xie X; Cui Z; Wang Y; Wang Y; Cao F; Romeis J; Peng Y; Li Y Toxins (Basel); 2018 Dec; 11(1):. PubMed ID: 30587774 [TBL] [Abstract][Full Text] [Related]
18. Impact of Antibiotics on Efficacy of Cry Toxins Produced in Two Different Genetically Modified Bt Maize Varieties in Two Lepidopteran Herbivore Species, Hilbeck A; Defarge N; Bøhn T; Krautter M; Conradin C; Amiel C; Panoff JM; Trtikova M Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477136 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the potential exposure of butterflies to genetically modified maize pollen in protected areas in Italy. Arpaia S; Baldacchino F; Bosi S; Burgio G; Errico S; Magarelli RA; Masetti A; Santorsola S Insect Sci; 2018 Aug; 25(4):549-561. PubMed ID: 29569843 [TBL] [Abstract][Full Text] [Related]
20. Bitrophic and Tritrophic Effects of Transgenic cry1Ab/cry2Aj Maize on the Beneficial, Nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Chang X; Lu Z; Shen Z; Peng Y; Ye G Environ Entomol; 2017 Oct; 46(5):1171-1176. PubMed ID: 28981636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]