These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26467518)

  • 21. Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study.
    Mateo S; Di Rienzo F; Reilly KT; Revol P; Delpuech C; Daligault S; Guillot A; Jacquin-Courtois S; Luauté J; Rossetti Y; Collet C; Rode G
    Restor Neurol Neurosci; 2015; 33(4):543-55. PubMed ID: 26409412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voluntary muscle weakness and co-activation after chronic cervical spinal cord injury.
    Thomas CK; Tucker ME; Bigland-Ritchie B
    J Neurotrauma; 1998 Feb; 15(2):149-61. PubMed ID: 9512090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ
    J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans.
    Calancie B; Molano MR; Broton JG
    Clin Neurophysiol; 2004 Oct; 115(10):2350-63. PubMed ID: 15351378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper frequency limits of bilateral coordination patterns.
    Morrison S; Hong SL; Newell KM
    Neurosci Lett; 2009 May; 454(3):233-8. PubMed ID: 19429090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study.
    Kloosterman MG; Snoek GJ; Kouwenhoven M; Nene AV; Jannink MJ
    J Rehabil Res Dev; 2010; 47(7):617-28. PubMed ID: 21110258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-Dependent Bimanual Coordination After Stroke: Relationship With Sensorimotor Impairments.
    Kantak SS; Zahedi N; McGrath RL
    Arch Phys Med Rehabil; 2016 May; 97(5):798-806. PubMed ID: 26874232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effect of spinal cord injury and functional impairment on human brain activation.
    Curt A; Bruehlmeier M; Leenders KL; Roelcke U; Dietz V
    J Neurotrauma; 2002 Jan; 19(1):43-51. PubMed ID: 11852977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N; Nozaki D; Abe MO; Akai M; Nakazawa K
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attempted Arm and Hand Movements can be Decoded from Low-Frequency EEG from Persons with Spinal Cord Injury.
    Ofner P; Schwarz A; Pereira J; Wyss D; Wildburger R; Müller-Putz GR
    Sci Rep; 2019 May; 9(1):7134. PubMed ID: 31073142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deficits in grasp versus reach during acute hemiparesis.
    Lang CE; Wagner JM; Bastian AJ; Hu Q; Edwards DF; Sahrmann SA; Dromerick AW
    Exp Brain Res; 2005 Sep; 166(1):126-36. PubMed ID: 16021431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of bilateral macular scotomas from age-related macular degeneration on reach-to-grasp hand movement.
    Timberlake GT; Omoscharka E; Quaney BM; Grose SA; Maino JH
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2540-50. PubMed ID: 21296817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of cervical dorsolateral funiculotomy on reach-to-grasp function in the rat.
    Stackhouse SK; Murray M; Shumsky JS
    J Neurotrauma; 2008 Aug; 25(8):1039-47. PubMed ID: 18721108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arm-trunk coordination for beyond-the-reach movements in adults with stroke.
    Shaikh T; Goussev V; Feldman AG; Levin MF
    Neurorehabil Neural Repair; 2014 May; 28(4):355-66. PubMed ID: 24270057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Could motor imagery be effective in upper limb rehabilitation of individuals with spinal cord injury? A case study.
    Grangeon M; Revol P; Guillot A; Rode G; Collet C
    Spinal Cord; 2012 Oct; 50(10):766-71. PubMed ID: 22508537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in hand muscle synergies in subjects with spinal cord injury: characterization and functional implications.
    Zariffa J; Steeves J; Pai DK
    J Spinal Cord Med; 2012 Sep; 35(5):310-8. PubMed ID: 23031168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.