These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 264677)
1. Role of cell surface carbohydrates and proteins in cell behavior: studies on the biochemical reversion of an N-acetylglucosamine-deficient fibroblast mutant. Pouysségur J; Willingham M; Pastan I Proc Natl Acad Sci U S A; 1977 Jan; 74(1):243-7. PubMed ID: 264677 [TBL] [Abstract][Full Text] [Related]
2. Cell mutants as a tool to study malignant transformation of fibroblasts. Pouysségur J; Franchi A; Silvestre P Prog Clin Biol Res; 1980; 41():931-44. PubMed ID: 7192865 [TBL] [Abstract][Full Text] [Related]
3. Surface morphology and agglutinability with concanavalin A in normal and transformed murine fibroblasts. Collard JG; Temmink JH J Cell Biol; 1976 Jan; 68(1):101-12. PubMed ID: 173721 [TBL] [Abstract][Full Text] [Related]
4. Mutants of mouse fibroblasts altered in the synthesis of cell surface glycoproteins. Preliminary evidence for a defect in the acetylation of glucosamine 6-phosphate. Pouysségur J; Pastan I J Biol Chem; 1977 Mar; 252(5):1639-46. PubMed ID: 838733 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle dependent agglutinability, distribution of concanavalin A binding sites and surface morphology of normal and transformed fibroblasts. Collard JG; Temmink JH Adv Exp Med Biol; 1975; 55():221-44. PubMed ID: 168744 [TBL] [Abstract][Full Text] [Related]
6. Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Willingham MC; Yamada KM; Yamada SS; Pouysségur J; Pastan I Cell; 1977 Mar; 10(3):375-80. PubMed ID: 557370 [TBL] [Abstract][Full Text] [Related]
7. Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts. Willingham MC; Pastan I Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1263-7. PubMed ID: 165501 [TBL] [Abstract][Full Text] [Related]
8. Surface glycoproteins and concanavalin-A-mediated agglutinability of clonal variants and tumour cells derived from SV40-virus-transformed mouse 3T3 cells. Smets LA; van Beek WP; van Rooij H Int J Cancer; 1976 Oct; 18(4):462-8. PubMed ID: 185157 [TBL] [Abstract][Full Text] [Related]
9. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. Culp LA J Cell Biol; 1974 Oct; 63(1):71-83. PubMed ID: 4473137 [TBL] [Abstract][Full Text] [Related]
10. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Yamada KM; Yamada SS; Pastan I Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1217-21. PubMed ID: 177979 [TBL] [Abstract][Full Text] [Related]
11. Transformation-sensitive cell surface protein: isolation, characterization, and role in cellular morphology and adhesion. Yamada KM; Olden K; Pastan I Ann N Y Acad Sci; 1978 Jun; 312():256-77. PubMed ID: 291364 [TBL] [Abstract][Full Text] [Related]
12. Control of DNA synthesis in growing BALB/c 3T3 mouse cells by a fibroblast growth regulatory factor. Natraj CV; Datta P Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6115-9. PubMed ID: 282629 [TBL] [Abstract][Full Text] [Related]
13. Effects of N-acetylglucosamine on cell surface glycoprotein and cell behavior of glucosamine requiring mutant derived from Chinese hamster lung cells. Onoda T; Nishigami K Hiroshima J Med Sci; 1981 Mar; 30(1):29-34. PubMed ID: 7275686 [No Abstract] [Full Text] [Related]
14. Polyclonal B cell activation by a B cell differentiation factor, B151-TRF2. II. Evidence for interaction of B151-TRF2 with glycoprotein on B cell membrane via recognition of terminal N-acetyl-D-glucosamine residue(s). Katoh Y; Ono S; Takahama Y; Miyake K; Hamaoka T J Immunol; 1986 Nov; 137(9):2871-7. PubMed ID: 3489778 [TBL] [Abstract][Full Text] [Related]
15. Serum dependence of expression of the transformed phenotype: experiments with subline of mouse L fibroblasts adapted to growth in serum-free medium. Bershadsky AD; Hamaoka T; Guelstein VI; Vasiliev JM; Gelfand IM Int J Cancer; 1976 Jul; 18(1):83-92. PubMed ID: 947861 [TBL] [Abstract][Full Text] [Related]
16. Modification of the calcium-independent mechanism of cell adhesion in transformed BHK cells. Urushihara H; Ikawa Y Cell Struct Funct; 1983 Mar; 8(1):57-65. PubMed ID: 6321041 [TBL] [Abstract][Full Text] [Related]
17. Cell surface morphology and adhesive properties of normal and virally transformed cells treated with tunicamycin, an inhibitor of protein glycosylation. Duksin D; Holbrook K; Williams K; Bornstein P Exp Cell Res; 1978 Oct; 116(1):153-65. PubMed ID: 699989 [No Abstract] [Full Text] [Related]
18. A comparison of glycosyltransferase activities and malignant properties in normal and transformed cells derived from BALB/c mice. Patt LM; Van Nest GA; Grimes WJ Cancer Res; 1975 Feb; 35(2):438-41. PubMed ID: 1167348 [TBL] [Abstract][Full Text] [Related]
19. Patching, microvilli, and the agglutination of normal and transformed cells. Ukena TE; Karnovsky MJ Prog Clin Biol Res; 1976; 9():261-73. PubMed ID: 1030804 [TBL] [Abstract][Full Text] [Related]
20. The Concanavalin A agglutinating system of cell membranes. Düzgüneş N Biosystems; 1975 May; 6(4):209-16. PubMed ID: 1137720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]