These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2646801)

  • 1. Ultrasonic non-destructive measurements of cortical bone thickness in human cadaver femur.
    Singh S
    Ultrasonics; 1989 Mar; 27(2):107-13. PubMed ID: 2646801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of in vivo cortical bone thickness using ultrasonic waves.
    Mano I; Horii K; Hagino H; Miki T; Matsukawa M; Otani T
    J Med Ultrason (2001); 2015 Jul; 42(3):315-22. PubMed ID: 26576782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of trabecular thickness using ultrasonic backcatter.
    Padilla F; Jenson F; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):3-22. PubMed ID: 16924879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of cortical thickness in a human cadaver femur. Conventional roentgenography versus computed tomography.
    Smith HW; De Smet AA; Levine E
    Clin Orthop Relat Res; 1982 Sep; (169):269-74. PubMed ID: 7105587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of bone thickness on densitometric and ultrasonic parameters, an in vivo study.
    Mokhtari-Dizaji M; Dadras MR; Larijani B
    Pak J Biol Sci; 2007 Feb; 10(4):545-52. PubMed ID: 19069533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of three ultrasonic axial transmission methods for bone assessment.
    Muller M; Moilanen P; Bossy E; Nicholson P; Kilappa V; Timonen J; Talmant M; Cheng S; Laugier P
    Ultrasound Med Biol; 2005 May; 31(5):633-42. PubMed ID: 15866413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements.
    Basillais A; Bensamoun S; Chappard C; Brunet-Imbault B; Lemineur G; Ilharreborde B; Ho Ba Tho MC; Benhamou CL
    J Orthop Sci; 2007 Mar; 12(2):141-8. PubMed ID: 17393269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation.
    Kubíková T; Bartoš M; Juhas Š; Suchý T; Sauerová P; Hubálek-Kalbáčová M; Tonar Z
    Ann Anat; 2018 Nov; 220():85-96. PubMed ID: 30092281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accuracy of computed tomography-based linear measurements of human femora and titanium stem.
    Feng Z; Ziv I; Rho J
    Invest Radiol; 1996 Jun; 31(6):333-7. PubMed ID: 8761865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of cortical thickness in experimentally created endosteal bone lesions: a comparison of radiography, CT, MR imaging, and anatomic sections.
    Preidler KW; Brossmann J; Daenen B; Pedowitz R; De Maeseneer M; Trudell D; Resnick D
    AJR Am J Roentgenol; 1997 Jun; 168(6):1501-5. PubMed ID: 9168714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic assessment of human and bovine trabecular bone: a comparison study.
    Alves JM; Xu W; Lin D; Siffert RS; Ryaby JT; Kaufman JJ
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):249-58. PubMed ID: 8682537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study.
    Sasso M; Haïat G; Yamato Y; Naili S; Matsukawa M
    Ultrasound Med Biol; 2007 Dec; 33(12):1933-42. PubMed ID: 17681677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.
    Croker SL; Reed W; Donlon D
    Forensic Sci Int; 2016 Mar; 260():104.e1-104.e17. PubMed ID: 26786143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization.
    Lefebvre F; Deblock Y; Campistron P; Ahite D; Fabre JJ
    J Biomed Mater Res; 2002; 63(4):441-6. PubMed ID: 12115753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-wave propagation imaging to evaluate the structure of cancellous bone.
    Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.
    Treece GM; Gee AH
    Med Image Anal; 2015 Feb; 20(1):249-64. PubMed ID: 25541355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship.
    Humbert L; Hazrati Marangalou J; Del Río Barquero LM; van Lenthe GH; van Rietbergen B
    Med Phys; 2016 Apr; 43(4):1945. PubMed ID: 27036590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography.
    Lasaygues P; Ouedraogo E; Lefebvre JP; Gindre M; Talmant M; Laugier P
    Phys Med Biol; 2005 Jun; 50(11):2633-49. PubMed ID: 15901959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the bone endocortical region using clinical CT.
    Pearson RA; Treece GM
    Med Image Anal; 2018 Feb; 44():28-40. PubMed ID: 29179157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision.
    Sievänen H; Koskue V; Rauhio A; Kannus P; Heinonen A; Vuori I
    J Bone Miner Res; 1998 May; 13(5):871-82. PubMed ID: 9610752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.