These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 26468143)

  • 21. Early molecular changes in Alzheimer disease: can we catch the disease in its presymptomatic phase?
    Wirz KT; Keitel S; Swaab DF; Verhaagen J; Bossers K
    J Alzheimers Dis; 2014; 38(4):719-40. PubMed ID: 24072070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria in aging and Alzheimer's disease.
    Crouch PJ; Cimdins K; Duce JA; Bush AI; Trounce IA
    Rejuvenation Res; 2007 Sep; 10(3):349-57. PubMed ID: 17708691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are mitochondria critical in the pathogenesis of Alzheimer's disease?
    Reddy PH; Beal MF
    Brain Res Brain Res Rev; 2005 Nov; 49(3):618-32. PubMed ID: 16269322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer's Disease?
    Hindle A; Singh SP; Pradeepkiran JA; Bose C; Vijayan M; Kshirsagar S; Sawant NA; Reddy PH
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease.
    Fleck D; Phu L; Verschueren E; Hinkle T; Reichelt M; Bhangale T; Haley B; Wang Y; Graham R; Kirkpatrick DS; Sheng M; Bingol B
    J Neurosci; 2019 Jun; 39(24):4636-4656. PubMed ID: 30948477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer's Disease.
    Guo L; Tian J; Du H
    J Alzheimers Dis; 2017; 57(4):1071-1086. PubMed ID: 27662318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cholinergic system in aging and neuronal degeneration.
    Schliebs R; Arendt T
    Behav Brain Res; 2011 Aug; 221(2):555-63. PubMed ID: 21145918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms.
    von Bernhardi R; Eugenín J
    Antioxid Redox Signal; 2012 May; 16(9):974-1031. PubMed ID: 22122400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease.
    Santos RX; Correia SC; Zhu X; Smith MA; Moreira PI; Castellani RJ; Nunomura A; Perry G
    Antioxid Redox Signal; 2013 Jun; 18(18):2444-57. PubMed ID: 23216311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Mitochondrial Role of SV2a Protein in Aging and Alzheimer's Disease: Studies with Levetiracetam.
    Stockburger C; Miano D; Baeumlisberger M; Pallas T; Arrey TN; Karas M; Friedland K; Müller WE
    J Alzheimers Dis; 2016; 50(1):201-15. PubMed ID: 26639968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioenergetic and oxidative stress in neurodegenerative diseases.
    Bowling AC; Beal MF
    Life Sci; 1995; 56(14):1151-71. PubMed ID: 7475893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shift in brain metabolism in late onset Alzheimer's disease: implications for biomarkers and therapeutic interventions.
    Yao J; Rettberg JR; Klosinski LP; Cadenas E; Brinton RD
    Mol Aspects Med; 2011 Aug; 32(4-6):247-57. PubMed ID: 22024249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuroinflammatory challenges compromise neuronal function in the aging brain: Postoperative cognitive delirium and Alzheimer's disease.
    Cortese GP; Burger C
    Behav Brain Res; 2017 Mar; 322(Pt B):269-279. PubMed ID: 27544872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease.
    Wu ZL; Ciallella JR; Flood DG; O'Kane TM; Bozyczko-Coyne D; Savage MJ
    Neurobiol Aging; 2006 Mar; 27(3):377-86. PubMed ID: 15927307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities.
    Perez Ortiz JM; Swerdlow RH
    Br J Pharmacol; 2019 Sep; 176(18):3489-3507. PubMed ID: 30675901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease.
    Reddy PH
    J Neurochem; 2006 Jan; 96(1):1-13. PubMed ID: 16305625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease.
    Hauptmann S; Keil U; Scherping I; Bonert A; Eckert A; Müller WE
    Exp Gerontol; 2006 Jul; 41(7):668-73. PubMed ID: 16677790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards Alzheimer's root cause: ECSIT as an integrating hub between oxidative stress, inflammation and mitochondrial dysfunction. Hypothetical role of the adapter protein ECSIT in familial and sporadic Alzheimer's disease pathogenesis.
    Soler-López M; Badiola N; Zanzoni A; Aloy P
    Bioessays; 2012 Jul; 34(7):532-41. PubMed ID: 22513506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translocator protein (TSPO) role in aging and Alzheimer's disease.
    Repalli J
    Curr Aging Sci; 2014; 7(3):168-75. PubMed ID: 25495567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying epigenetics to Alzheimer's disease via the latent early-life associated regulation (LEARn) model.
    Maloney B; Sambamurti K; Zawia N; Lahiri DK
    Curr Alzheimer Res; 2012 Jun; 9(5):589-99. PubMed ID: 22300406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.