BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26468752)

  • 1. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.
    Foe IT; Child MA; Majmudar JD; Krishnamurthy S; van der Linden WA; Ward GE; Martin BR; Bogyo M
    Cell Host Microbe; 2015 Oct; 18(4):501-11. PubMed ID: 26468752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail.
    Krishnamurthy S; Deng B; Del Rio R; Buchholz KR; Treeck M; Urban S; Boothroyd J; Lam YW; Ward GE
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of new palmitoylated proteins in Toxoplasma gondii.
    Caballero MC; Alonso AM; Deng B; Attias M; de Souza W; Corvi MM
    Biochim Biophys Acta; 2016 Apr; 1864(4):400-8. PubMed ID: 26825284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein palmitoylation inhibition by 2-bromopalmitate alters gliding, host cell invasion and parasite morphology in Toxoplasma gondii.
    Alonso AM; Coceres VM; De Napoli MG; Nieto Guil AF; Angel SO; Corvi MM
    Mol Biochem Parasitol; 2012 Jul; 184(1):39-43. PubMed ID: 22484029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications.
    Nardelli SC; Che FY; Silmon de Monerri NC; Xiao H; Nieves E; Madrid-Aliste C; Angel SO; Sullivan WJ; Angeletti RH; Kim K; Weiss LM
    mBio; 2013 Dec; 4(6):e00922-13. PubMed ID: 24327343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking Palmitoylation of Toxoplasma gondii Myosin Light Chain 1 Disrupts Glideosome Composition but Has Little Impact on Parasite Motility.
    Rompikuntal PK; Kent RS; Foe IT; Deng B; Bogyo M; Ward GE
    mSphere; 2021 May; 6(3):. PubMed ID: 34011689
    [No Abstract]   [Full Text] [Related]  

  • 7. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.
    Brown RW; Sharma AI; Engman DM
    Crit Rev Biochem Mol Biol; 2017 Apr; 52(2):145-162. PubMed ID: 28228066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation.
    Zhou CX; Zhu XQ; Elsheikha HM; He S; Li Q; Zhou DH; Suo X
    J Proteomics; 2016 Oct; 148():12-9. PubMed ID: 27422377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging roles for protein S-palmitoylation in Toxoplasma biology.
    Frénal K; Kemp LE; Soldati-Favre D
    Int J Parasitol; 2014 Feb; 44(2):121-31. PubMed ID: 24184909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions.
    Silmon de Monerri NC; Yakubu RR; Chen AL; Bradley PJ; Nieves E; Weiss LM; Kim K
    Cell Host Microbe; 2015 Nov; 18(5):621-33. PubMed ID: 26567513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii.
    Chen Z; Harb OS; Roos DS
    PLoS One; 2008; 3(10):e3611. PubMed ID: 18974850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion.
    Mital J; Meissner M; Soldati D; Ward GE
    Mol Biol Cell; 2005 Sep; 16(9):4341-9. PubMed ID: 16000372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii.
    Tomavo S
    Int J Parasitol; 2014 Feb; 44(2):133-8. PubMed ID: 24211609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii.
    Kawase O; Nishikawa Y; Bannai H; Zhang H; Zhang G; Jin S; Lee EG; Xuan X
    Proteomics; 2007 Oct; 7(20):3718-25. PubMed ID: 17880006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study on the heparin-binding proteomes of Toxoplasma gondii and Plasmodium falciparum.
    Zhang Y; Jiang N; Jia B; Chang Z; Zhang Y; Wei X; Zhou J; Wang H; Zhao X; Yu S; Song M; Tu Z; Lu H; Yin J; Wahlgren M; Chen Q
    Proteomics; 2014 Aug; 14(15):1737-45. PubMed ID: 24888565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxoplasma gondii proteomics.
    Weiss LM; Fiser A; Angeletti RH; Kim K
    Expert Rev Proteomics; 2009 Jun; 6(3):303-13. PubMed ID: 19489701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of palmitoylated platelet proteins.
    Dowal L; Yang W; Freeman MR; Steen H; Flaumenhaft R
    Blood; 2011 Sep; 118(13):e62-73. PubMed ID: 21813449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel components of the Toxoplasma inner membrane complex revealed by BioID.
    Chen AL; Kim EW; Toh JY; Vashisht AA; Rashoff AQ; Van C; Huang AS; Moon AS; Bell HN; Bentolila LA; Wohlschlegel JA; Bradley PJ
    mBio; 2015 Feb; 6(1):e02357-14. PubMed ID: 25691595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii.
    Carey KL; Westwood NJ; Mitchison TJ; Ward GE
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7433-8. PubMed ID: 15123807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Toxoplasma gondii Rhoptry Kinome Is Essential for Chronic Infection.
    Fox BA; Rommereim LM; Guevara RB; Falla A; Hortua Triana MA; Sun Y; Bzik DJ
    mBio; 2016 May; 7(3):. PubMed ID: 27165797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.