These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26468901)

  • 41. Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors.
    Guo X; Ortiz RP; Zheng Y; Kim MG; Zhang S; Hu Y; Lu G; Facchetti A; Marks TJ
    J Am Chem Soc; 2011 Aug; 133(34):13685-97. PubMed ID: 21793505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability.
    Wu Y; Li Y; Gardner S; Ong BS
    J Am Chem Soc; 2005 Jan; 127(2):614-8. PubMed ID: 15643885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Frequency Operation of Vertical Organic Field-Effect Transistors.
    Höppner M; Kheradmand-Boroujeni B; Vahland J; Sawatzki MF; Kneppe D; Ellinger F; Kleemann H
    Adv Sci (Weinh); 2022 Aug; 9(24):e2201660. PubMed ID: 35754312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage.
    Liu X; Liu W; Xiao X; Wang C; Fan Z; Qu Y; Cai B; Guo S; Li J; Jiang C; Duan X; Liao L
    Nanoscale; 2013 Apr; 5(7):2830-4. PubMed ID: 23443668
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wafer-scale patterning of reduced graphene oxide electrodes by transfer-and-reverse stamping for high performance OFETs.
    Lee JS; Kim NH; Kang MS; Yu H; Lee DR; Oh JH; Chang ST; Cho JH
    Small; 2013 Aug; 9(16):2817-25. PubMed ID: 23589341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-performance thin-film transistors using semiconductor nanowires and nanoribbons.
    Duan X; Niu C; Sahi V; Chen J; Parce JW; Empedocles S; Goldman JL
    Nature; 2003 Sep; 425(6955):274-8. PubMed ID: 13679911
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-aligned fabrication of graphene RF transistors with T-shaped gate.
    Badmaev A; Che Y; Li Z; Wang C; Zhou C
    ACS Nano; 2012 Apr; 6(4):3371-6. PubMed ID: 22404336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric.
    Basu S; Adriyanto F; Wang YH
    Nanotechnology; 2014 Feb; 25(8):085201. PubMed ID: 24492205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced performance of solution-processed TESPE-ADT thin-film transistors.
    Chen LH; Hu TS; Huang PY; Kim C; Yang CH; Wang JJ; Yan JY; Ho JC; Lee CC; Chen MC
    Chemphyschem; 2013 Aug; 14(12):2772-6. PubMed ID: 23776039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A New Architecture for Fibrous Organic Transistors Based on a Double-Stranded Assembly of Electrode Microfibers for Electronic Textile Applications.
    Kim SJ; Kim H; Ahn J; Hwang DK; Ju H; Park MC; Yang H; Kim SH; Jang HW; Lim JA
    Adv Mater; 2019 Jun; 31(23):e1900564. PubMed ID: 30977567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes.
    Choi JY; Kang W; Kang B; Cha W; Son SK; Yoon Y; Kim H; Kang Y; Ko MJ; Son HJ; Cho K; Cho JH; Kim B
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):6002-12. PubMed ID: 25734886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sub-100 nm channel length graphene transistors.
    Liao L; Bai J; Cheng R; Lin YC; Jiang S; Qu Y; Huang Y; Duan X
    Nano Lett; 2010 Oct; 10(10):3952-6. PubMed ID: 20815334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multifunctional polymer-graphene thin-film transistor with tunable transport regimes.
    Mosciatti T; Haar S; Liscio F; Ciesielski A; Orgiu E; Samorì P
    ACS Nano; 2015 Mar; 9(3):2357-67. PubMed ID: 25689615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication and evaluation of solution-processed reduced graphene oxide electrodes for p- and n-channel bottom-contact organic thin-film transistors.
    Becerril HA; Stoltenberg RM; Tang ML; Roberts ME; Liu Z; Chen Y; Kim DH; Lee BL; Lee S; Bao Z
    ACS Nano; 2010 Nov; 4(11):6343-52. PubMed ID: 20945927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors.
    Avsar A; Vera-Marun IJ; Tan JY; Watanabe K; Taniguchi T; Castro Neto AH; Özyilmaz B
    ACS Nano; 2015 Apr; 9(4):4138-45. PubMed ID: 25769342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation.
    Jung SM; Kang HL; Won JK; Kim J; Hwang C; Ahn K; Chung I; Ju BK; Kim MG; Park SK
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3739-3749. PubMed ID: 29322770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Percolation-Limited Dual Charge Transport in Vertical p
    Lim DU; Kim S; Choi YJ; Jo SB; Cho JH
    Nano Lett; 2020 May; 20(5):3585-3592. PubMed ID: 32343583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications.
    Kim S; Shin S; Kim T; Du H; Song M; Kim KS; Cho S; Lee SW; Seo S
    Nanotechnology; 2017 Apr; 28(17):175710. PubMed ID: 28374681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiophene polymer semiconductors for organic thin-film transistors.
    Ong BS; Wu Y; Li Y; Liu P; Pan H
    Chemistry; 2008; 14(16):4766-78. PubMed ID: 18366043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-Area CVD-Grown Sub-2 V ReS
    Dathbun A; Kim Y; Kim S; Yoo Y; Kang MS; Lee C; Cho JH
    Nano Lett; 2017 May; 17(5):2999-3005. PubMed ID: 28414455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.