These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26468996)

  • 1. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
    Tang JS; Zhou ZQ; Wang YT; Li YL; Liu X; Hua YL; Zou Y; Wang S; He DY; Chen G; Sun YN; Yu Y; Li MF; Zha GW; Ni HQ; Niu ZC; Li CF; Guo GC
    Nat Commun; 2015 Oct; 6():8652. PubMed ID: 26468996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum repeaters with photon pair sources and multimode memories.
    Simon C; de Riedmatten H; Afzelius M; Sangouard N; Zbinden H; Gisin N
    Phys Rev Lett; 2007 May; 98(19):190503. PubMed ID: 17677612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory.
    Kutluer K; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2017 May; 118(21):210502. PubMed ID: 28598672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal.
    Laplane C; Jobez P; Etesse J; Gisin N; Afzelius M
    Phys Rev Lett; 2017 May; 118(21):210501. PubMed ID: 28598674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of a BDCZ quantum repeater node.
    Yuan ZS; Chen YA; Zhao B; Chen S; Schmiedmayer J; Pan JW
    Nature; 2008 Aug; 454(7208):1098-101. PubMed ID: 18756253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-Atom Temporally Multiplexed Quantum Memory with Cavity-Enhanced Noise Suppression.
    Heller L; Farrera P; Heinze G; de Riedmatten H
    Phys Rev Lett; 2020 May; 124(21):210504. PubMed ID: 32530694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-enhanced and temporally multiplexed atom-photon entanglement interface.
    Liu H; Wang M; Jiao H; Lu J; Fan W; Li S; Wang H
    Opt Express; 2023 Feb; 31(5):7200-7211. PubMed ID: 36859856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust creation of entanglement between remote memory qubits.
    Zhao B; Chen ZB; Chen YA; Schmiedmayer J; Pan JW
    Phys Rev Lett; 2007 Jun; 98(24):240502. PubMed ID: 17677950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters.
    Askarani MF; Das A; Davidson JH; Amaral GC; Sinclair N; Slater JA; Marzban S; Thiel CW; Cone RL; Oblak D; Tittel W
    Phys Rev Lett; 2021 Nov; 127(22):220502. PubMed ID: 34889639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heralded entanglement distribution between two absorptive quantum memories.
    Liu X; Hu J; Li ZF; Li X; Li PY; Liang PJ; Zhou ZQ; Li CF; Guo GC
    Nature; 2021 Jun; 594(7861):41-45. PubMed ID: 34079139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entanglement between a Telecom Photon and an On-Demand Multimode Solid-State Quantum Memory.
    Rakonjac JV; Lago-Rivera D; Seri A; Mazzera M; Grandi S; de Riedmatten H
    Phys Rev Lett; 2021 Nov; 127(21):210502. PubMed ID: 34860116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Multimode Storage of Entangled Photon Pairs.
    Tiranov A; Strassmann PC; Lavoie J; Brunner N; Huber M; Verma VB; Nam SW; Mirin RP; Lita AE; Marsili F; Afzelius M; Bussières F; Gisin N
    Phys Rev Lett; 2016 Dec; 117(24):240506. PubMed ID: 28009181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
    De Greve K; McMahon PL; Yu L; Pelc JS; Jones C; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nat Commun; 2013; 4():2228. PubMed ID: 23887066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telecom-heralded entanglement between multimode solid-state quantum memories.
    Lago-Rivera D; Grandi S; Rakonjac JV; Seri A; de Riedmatten H
    Nature; 2021 Jun; 594(7861):37-40. PubMed ID: 34079135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.
    Li T; Deng FG
    Sci Rep; 2015 Oct; 5():15610. PubMed ID: 26502993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory.
    Yang TS; Zhou ZQ; Hua YL; Liu X; Li ZF; Li PY; Ma Y; Liu C; Liang PJ; Li X; Xiao YX; Hu J; Li CF; Guo GC
    Nat Commun; 2018 Aug; 9(1):3407. PubMed ID: 30143602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.
    Schaibley JR; Burgers AP; McCracken GA; Duan LM; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2013 Apr; 110(16):167401. PubMed ID: 23679636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storing single photons emitted by a quantum memory on a highly excited Rydberg state.
    Distante E; Farrera P; Padrón-Brito A; Paredes-Barato D; Heinze G; de Riedmatten H
    Nat Commun; 2017 Jan; 8():14072. PubMed ID: 28102203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.
    Yu L; Natarajan CM; Horikiri T; Langrock C; Pelc JS; Tanner MG; Abe E; Maier S; Schneider C; Höfling S; Kamp M; Hadfield RH; Fejer MM; Yamamoto Y
    Nat Commun; 2015 Nov; 6():8955. PubMed ID: 26597223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.