These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26469000)

  • 21. High-efficient entanglement distillation from photon loss and decoherence.
    Wang TJ; Wang C
    Opt Express; 2015 Nov; 23(24):31550-63. PubMed ID: 26698778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum correlations in optical angle-orbital angular momentum variables.
    Leach J; Jack B; Romero J; Jha AK; Yao AM; Franke-Arnold S; Ireland DG; Boyd RW; Barnett SM; Padgett MJ
    Science; 2010 Aug; 329(5992):662-5. PubMed ID: 20689014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum entanglement: facts and fiction - how wrong was Einstein after all?
    Nordén B
    Q Rev Biophys; 2016 Jan; 49():e17. PubMed ID: 27659445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental purification of two-atom entanglement.
    Reichle R; Leibfried D; Knill E; Britton J; Blakestad RB; Jost JD; Langer C; Ozeri R; Seidelin S; Wineland DJ
    Nature; 2006 Oct; 443(7113):838-41. PubMed ID: 17051214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Path identity as a source of high-dimensional entanglement.
    Kysela J; Erhard M; Hochrainer A; Krenn M; Zeilinger A
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26118-26122. PubMed ID: 33004628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum entanglement of high angular momenta.
    Fickler R; Lapkiewicz R; Plick WN; Krenn M; Schaeff C; Ramelow S; Zeilinger A
    Science; 2012 Nov; 338(6107):640-3. PubMed ID: 23118185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable multiparticle entanglement of trapped ions.
    Häffner H; Hänsel W; Roos CF; Benhelm J; Chek-al-Kar D; Chwalla M; Körber T; Rapol UD; Riebe M; Schmidt PO; Becher C; Gühne O; Dür W; Blatt R
    Nature; 2005 Dec; 438(7068):643-6. PubMed ID: 16319886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum.
    Vaziri A; Pan JW; Jennewein T; Weihs G; Zeilinger A
    Phys Rev Lett; 2003 Nov; 91(22):227902. PubMed ID: 14683274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-dimensional entanglement between distant atomic-ensemble memories.
    Ding DS; Zhang W; Shi S; Zhou ZY; Li Y; Shi BS; Guo GC
    Light Sci Appl; 2016 Oct; 5(10):e16157. PubMed ID: 30167124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realization of the Einstein-Podolsky-Rosen Paradox Using Radial Position and Radial Momentum Variables.
    Chen L; Ma T; Qiu X; Zhang D; Zhang W; Boyd RW
    Phys Rev Lett; 2019 Aug; 123(6):060403. PubMed ID: 31491168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering two-photon high-dimensional states through quantum interference.
    Zhang Y; Roux FS; Konrad T; Agnew M; Leach J; Forbes A
    Sci Adv; 2016 Feb; 2(2):e1501165. PubMed ID: 26933685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multidimensional entanglement transport through single-mode fiber.
    Liu J; Nape I; Wang Q; Vallés A; Wang J; Forbes A
    Sci Adv; 2020 Jan; 6(4):eaay0837. PubMed ID: 32042899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
    Budich JC; Trauzettel B
    Nanotechnology; 2010 Jul; 21(27):274001. PubMed ID: 20571188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Generation of Narrow-band Hyperentangled Photons.
    Zhao TM; Ihn YS; Kim YH
    Phys Rev Lett; 2019 Mar; 122(12):123607. PubMed ID: 30978083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip generation of high-dimensional entangled quantum states and their coherent control.
    Kues M; Reimer C; Roztocki P; Cortés LR; Sciara S; Wetzel B; Zhang Y; Cino A; Chu ST; Little BE; Moss DJ; Caspani L; Azaña J; Morandotti R
    Nature; 2017 Jun; 546(7660):622-626. PubMed ID: 28658228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement.
    Ming Y; Liu Y; Chen W; Yan Y; Zhang H
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperentanglement purification using imperfect spatial entanglement.
    Wang TJ; Mi SC; Wang C
    Opt Express; 2017 Feb; 25(3):2969-2982. PubMed ID: 29519013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.