These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26469081)

  • 1. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.
    Mannan AA; Toya Y; Shimizu K; McFadden J; Kierzek AM; Rocco A
    PLoS One; 2015; 10(10):e0139507. PubMed ID: 26469081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of model complexity and size on metabolic flux distribution and control: case study in Escherichia coli.
    Hameri T; Fengos G; Hatzimanikatis V
    BMC Bioinformatics; 2021 Mar; 22(1):134. PubMed ID: 33743594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modelling of central carbon metabolism in Escherichia coli.
    Peskov K; Mogilevskaya E; Demin O
    FEBS J; 2012 Sep; 279(18):3374-85. PubMed ID: 22823407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics data for sampling thermodynamically feasible kinetic models.
    de Leeuw M; Matos MRA; Nielsen LK
    Metab Eng; 2023 Jul; 78():41-47. PubMed ID: 37209863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.
    Kaleta C; de Figueiredo LF; Schuster S
    Genome Res; 2009 Oct; 19(10):1872-83. PubMed ID: 19541909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.
    Khodayari A; Maranas CD
    Nat Commun; 2016 Dec; 7():13806. PubMed ID: 27996047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method to Constrain Genome-Scale Models with 13C Labeling Data.
    Martín HG; Kumar VS; Weaver D; Ghosh A; Chubukov V; Mukhopadhyay A; Arkin A; Keasling JD
    PLoS Comput Biol; 2015 Sep; 11(9):e1004363. PubMed ID: 26379153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
    Fleming RM; Thiele I; Provan G; Nasheuer HP
    J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Analysis of Fluxes in Genome-Scale Metabolic Pathways.
    MacGillivray M; Ko A; Gruber E; Sawyer M; Almaas E; Holder A
    Sci Rep; 2017 Mar; 7(1):268. PubMed ID: 28325918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modeling of the central carbon metabolism of Escherichia coli.
    Chassagnole C; Noisommit-Rizzi N; Schmid JW; Mauch K; Reuss M
    Biotechnol Bioeng; 2002 Jul; 79(1):53-73. PubMed ID: 17590932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural property for reduction of biochemical networks.
    Küken A; Wendering P; Langary D; Nikoloski Z
    Sci Rep; 2021 Aug; 11(1):17415. PubMed ID: 34465818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
    Park JM; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14931-6. PubMed ID: 20679215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling.
    Costa RS; Machado D; Rocha I; Ferreira EC
    IET Syst Biol; 2011 May; 5(3):157-63. PubMed ID: 21639589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.