These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26469081)

  • 21. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model.
    Hädicke O; Klamt S
    Sci Rep; 2017 Jan; 7():39647. PubMed ID: 28045126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.
    Kim MK; Lane A; Kelley JJ; Lun DS
    PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathways and fluxes: exploring the plant metabolic network.
    Kruger NJ; Ratcliffe RG
    J Exp Bot; 2012 Mar; 63(6):2243-6. PubMed ID: 22407647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale.
    McCloskey D; Young JD; Xu S; Palsson BO; Feist AM
    Anal Chem; 2016 Apr; 88(7):3844-52. PubMed ID: 26981784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media.
    Imielinski M; Belta C; Rubin H; Halász A
    Biophys J; 2006 Apr; 90(8):2659-72. PubMed ID: 16461408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments.
    Tong M; French S; El Zahed SS; Ong WK; Karp PD; Brown ED
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved kinetic model of Escherichia coli central carbon metabolism in batch and continuous cultures.
    Kurata H; Sugimoto Y
    J Biosci Bioeng; 2018 Feb; 125(2):251-257. PubMed ID: 29054464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flux-based hierarchical organization of Escherichia coli's metabolic network.
    Robaina-Estévez S; Nikoloski Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007832. PubMed ID: 32310959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.
    Smith RW; van Rosmalen RP; Martins Dos Santos VAP; Fleck C
    BMC Syst Biol; 2018 Jun; 12(1):72. PubMed ID: 29914475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FlexFlux: combining metabolic flux and regulatory network analyses.
    Marmiesse L; Peyraud R; Cottret L
    BMC Syst Biol; 2015 Dec; 9():93. PubMed ID: 26666757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points.
    Barenholz U; Davidi D; Reznik E; Bar-On Y; Antonovsky N; Noor E; Milo R
    Elife; 2017 Feb; 6():. PubMed ID: 28169831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamics-based metabolic flux analysis.
    Henry CS; Broadbelt LJ; Hatzimanikatis V
    Biophys J; 2007 Mar; 92(5):1792-805. PubMed ID: 17172310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale prediction of phenotype: concept.
    Varner JD
    Biotechnol Bioeng; 2000 Sep; 69(6):664-78. PubMed ID: 10918142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
    Reed JL; Vo TD; Schilling CH; Palsson BO
    Genome Biol; 2003; 4(9):R54. PubMed ID: 12952533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of metabolic flux using dynamic labelling and metabolic modelling.
    Fernie AR; Morgan JA
    Plant Cell Environ; 2013 Sep; 36(9):1738-50. PubMed ID: 23421750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.