These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26469184)

  • 1. In situ X-ray nanotomography of metal surfaces during electropolishing.
    Nave MI; Allen JP; Karen Chen-Wiegart YC; Wang J; Kalidindi SR; Kornev KG
    Sci Rep; 2015 Oct; 5():15257. PubMed ID: 26469184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.
    Nave MI; Chen-Wiegart YC; Wang J; Kornev KG
    Phys Chem Chem Phys; 2015 Sep; 17(35):23121-31. PubMed ID: 26279498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography.
    Nave MI; Gu Y; Karen Chen-Wiegart YC; Wang J; Kornev KG
    Faraday Discuss; 2017 Jul; 199():101-114. PubMed ID: 28451662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport-limited electrochemical formation of long nanosharp probes from tungsten.
    Nave M; Rubin B; Maximov V; Creager S; Kornev KG
    Nanotechnology; 2013 Sep; 24(35):355702. PubMed ID: 23924892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary and surface effects in the formation of nanosharp tungsten tips by electropolishing.
    Kulakov M; Luzinov I; Kornev KG
    Langmuir; 2009 Apr; 25(8):4462-8. PubMed ID: 19256460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution.
    Han W; Fang FZ
    Adv Manuf; 2020; 8(3):265-278. PubMed ID: 32999753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters.
    Ju BF; Chen YL; Ge Y
    Rev Sci Instrum; 2011 Jan; 82(1):013707. PubMed ID: 21280837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopatterning of transition metal surfaces via electrochemical dimple array formation.
    Singh S; Barden WR; Kruse P
    ACS Nano; 2008 Dec; 2(12):2453-64. PubMed ID: 19206279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale scanning probe tips with subnanometer rms roughness.
    Xu D; Liechti KM; Ravi-Chandar K
    Rev Sci Instrum; 2007 Jul; 78(7):073707. PubMed ID: 17672766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.
    Miyake A; Matsuno J; Toh S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i24-i25. PubMed ID: 25359821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel electrochemical method of fast and reproducible fabrication of metallic nanoelectrodes.
    Silva EL; Silva RF; Zheludkevich M; Oliveira FJ
    Rev Sci Instrum; 2014 Sep; 85(9):095109. PubMed ID: 25273774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation.
    Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W
    Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample preparation of energy materials for X-ray nanotomography with micromanipulation.
    Chen-Wiegart YC; Camino FE; Wang J
    Chemphyschem; 2014 Jun; 15(8):1587-91. PubMed ID: 24668921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel atomic force microscope operating in liquid for in situ investigation of electrochemical preparation of porous alumina.
    Zhang H; Zhang D; He Y
    Microsc Res Tech; 2005 Feb; 66(2-3):126-31. PubMed ID: 15880512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes.
    Hermans A; Wightman RM
    Langmuir; 2006 Dec; 22(25):10348-53. PubMed ID: 17129002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple approach for fabrication of dual-disk electrodes with a nanometer-radius electrode and a micrometer-radius electrode.
    Gao N; Lin X; Jia W; Zhang X; Jin W
    Talanta; 2007 Sep; 73(3):589-93. PubMed ID: 19073075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
    Zhang Y; Hillier AC
    Anal Chem; 2010 Jul; 82(14):6139-47. PubMed ID: 20575560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces.
    Shrestha BR; Baimpos T; Raman S; Valtiner M
    ACS Nano; 2014 Jun; 8(6):5979-87. PubMed ID: 24826945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.