These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 26469203)

  • 41. A Novel Spatiotemporal Process Feature Learning Method Based On the Pseudo-Siamese Network for Complex Chemical Process Concurrent Condition Monitoring.
    Xu Y; Jia M; Mao Z
    ACS Omega; 2022 Oct; 7(41):36728-36747. PubMed ID: 36278083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
    Law MW; Chung AC
    IEEE Trans Image Process; 2013 Mar; 22(3):845-59. PubMed ID: 22955902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated detection of videotaped neonatal seizures of epileptic origin.
    Karayiannis NB; Xiong Y; Tao G; Frost JD; Wise MS; Hrachovy RA; Mizrahi EM
    Epilepsia; 2006 Jun; 47(6):966-80. PubMed ID: 16822243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pattern motion representation in primary visual cortex is mediated by transcortical feedback.
    Schmidt KE; Lomber SG; Payne BR; Galuske RA
    Neuroimage; 2011 Jan; 54(1):474-84. PubMed ID: 20709175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Action recognition from video using feature covariance matrices.
    Guo K; Ishwar P; Konrad J
    IEEE Trans Image Process; 2013 Jun; 22(6):2479-94. PubMed ID: 23508265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multilevel depth and image fusion for human activity detection.
    Ni B; Pei Y; Moulin P; Yan S
    IEEE Trans Cybern; 2013 Oct; 43(5):1383-94. PubMed ID: 23996589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feature extraction via KPCA for classification of gait patterns.
    Wu J; Wang J; Liu L
    Hum Mov Sci; 2007 Jun; 26(3):393-411. PubMed ID: 17509708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action recognition using mined hierarchical compound features.
    Gilbert A; Illingworth J; Bowden R
    IEEE Trans Pattern Anal Mach Intell; 2011 May; 33(5):883-97. PubMed ID: 20714014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimal Curiosity-Driven Modular Incremental Slow Feature Analysis.
    Kompella VR; Luciw M; Stollenga MF; Schmidhuber J
    Neural Comput; 2016 Aug; 28(8):1599-662. PubMed ID: 27348735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptive Local Spatiotemporal Features from RGB-D Data for One-Shot Learning Gesture Recognition.
    Lin J; Ruan X; Yu N; Yang YH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.
    Zhang B; Yang Y; Chen C; Yang L; Han J; Shao L
    IEEE Trans Image Process; 2017 Oct; 26(10):4648-4660. PubMed ID: 28644810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning.
    Li Z; Yan X
    ISA Trans; 2019 Dec; 95():68-81. PubMed ID: 31151751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progressive Instance-Aware Feature Learning for Compositional Action Recognition.
    Yan R; Xie L; Shu X; Zhang L; Tang J
    IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):10317-10330. PubMed ID: 37030795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physical limitations of work extraction from temporal correlations.
    Stopnitzky E; Still S; Ouldridge TE; Altenberg L
    Phys Rev E; 2019 Apr; 99(4-1):042115. PubMed ID: 31108699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inspecting temporal scales with non-linear signal features: a way to extract more information from brain activity?
    Escudero J
    Clin Neurophysiol; 2015 Mar; 126(3):435-6. PubMed ID: 25088735
    [No Abstract]   [Full Text] [Related]  

  • 58. Temporal Variance Analysis for Action Recognition.
    Miao J; Xu X; Qiu S; Qing C; Tao D
    IEEE Trans Image Process; 2015 Dec; 24(12):5904-15. PubMed ID: 26469203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Slow feature analysis for human action recognition.
    Zhang Z; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2012 Mar; 34(3):436-50. PubMed ID: 21808089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slow feature analysis: unsupervised learning of invariances.
    Wiskott L; Sejnowski TJ
    Neural Comput; 2002 Apr; 14(4):715-70. PubMed ID: 11936959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.